GAM450
Winter 2004
Jen Sward

Scavenger Hunt TDD

Version 3.00

January 16, 2004

Team: Practical Chaos

GAM 400, Fall 2004

Jen Sward

Copyright © 2004 Digipen Institute Of Technology

Table of Contents

7Introduction

Purpose
7
Technical Goals
7
Target Platform
8
Development Environment
8
External Tools
9
Development Team
9
Development Time
10
Development Risks
10
First Full 3D Graphics Engine
10
Complex Artificial Intelligence System
10
Development Perks
11
Professionally Designed 3D Models & Artwork
11
Wholesome Game Play Designed For Family Entertainment
11
Unique Game Play and Premise
11
Technical Overview
12
Coding Guidelines
12
Naming Conventions
12
Function Headers
12
Commenting
13
Format
13
Using Constants
13
Libraries
13
Testing and Debugging
14
Game Mechanics
15
Overview
15
Game Structures
15
Player Class
15
Level Class
16
Game Class
16
Information Structures
17
Game Messages
17
Main Loop
18
Game States
18
State Hierarchy
18
State Functionality
19
In Game Loop
21
Player Actions
22
Graphics
25
Overview
25
Texture Namespace
25
Image
26
Texture
27
Sprite
29
World Object
30
Methods and Structures
33
Interface
33
Resources and Objects
35
Mesh
35
Mesh Object
36
Animated Mesh
36
Animated Mesh Object
37
Font
37
Text Object
38
Sound
39
Overview
39
Tasks
39
Loading and Streaming Sound Files
39
A Choice of Sound Library
39
Sound Buffers
40
Sound Sources
40
The Sound Listener
40
The Sound Manager
40
Requirements
40
cSoundData
41
cSoundSource
43
cListener
44
cSoundMgr
44
Input
47
Overview
47
Tasks
47
Keyboards
47
Mouse Devices
47
Joystick Axes
47
Joystick Hats
48
Joystick Trackballs
48
Multiple Devices
48
A Generalized Event Pool
48
Keybindings
48
Event Handling
48
cInputMgr
49
cInputEvent and derivatives
51
Networking
52
Overview
52
Packets
52
Events
55
User Interface
58
Overview
58
Layout
58
Tasks
59
Widgets
59
User Interface Definition Files
59
Helper Classes
59
Signals and Slots
59
The Menu System
60
Input
60
Ease of Use
60
Three-Dimensional Effects
60
Heads Up Display (HUD)
60
Widget Class Hierarchy
61
Requirements
61
Widget Classes
61
Non-Widget Classes
64
Artificial Intelligence
67
Overview
67
Initialization
67
Creating an AI player
68
AI Player Structure
70
Personality
70
Sensory
74
Logic
74
Knowledge Base
75
Memory
76
Plan
77
Reflex and Action Output
78
Game Message Handling
78
Evaluating Desire Rating and Changing Plans
80
Taking Steps To Complete Plans
83
Plan Prerequisites
85
Path-finding
85
Global Paths
85
Local Paths
89
Searching
99
Using Gags On Other Players
100
Active Gags
100
Passive Gag
100
Interfacing With Hot Spots
101
Taking Items From Hot Spots
101
Knocking On Doors For Trick-or-Treats
102
Using the Drop Box
102
Special Effects
102
From Gags
103
From Treats
103
From Tricks
104
Collision Detection
106
Overview
106
Oriented Boxes
106
Circles
107
Bounding Area Collision
108
Scripting
111
Overview
111
Tasks
111
Executing a Script File
111
Exposing C++ Functions and Methods to Lua
111
Exposing Lua functions to C++
112
Exposing C++ Classes to Lua
112
Dynamic Lua Code Execution
112
Memory Management
112
Requirements
113
cLua
113
File Formats
117
Overview
117
Player Data File
117
Scene File
118
External Resources
119
Overview
119
Art and Video
119
Sound and Music
122
Editors
124
Overview
124
Level Editor
124
AI Testing Module
124
Module Features
124
Module Display
125
Module Lifespan
126
Installer
127
Overview
127
Tasks
127
Cross-Platform Installation
127
The NullSoft Install System (NSIS)
127
The Loki Installer
128
The MacOS Installer
128
Installer Feel
128
Requirements
128
Mockups
128
NSIS
129
Loki Installer
130
Glossary
132
Team Signature Sheet
135

Introduction

Purpose

This Technical Design Document for Scavenger Hunt is set up to be a living document, which illustrates the technical approaches utilized to develop the game. Each aspect of the game is covered in its respective section, and each section is written by the individual(s) directly involved with the implementation of those elements. As such, each section is also subject to revisions and updates by said authors.

This document will change over time. As the game is developed, an effort will be made to ensure that this document is altered to reflect the changes in the design and construction of the game. By the end of the development cycle, this document should serve as an accurate blueprint to how the game was constructed and reflect all of the concerns that were taken into account at each stage of development.

Technical Goals

Scavenger Hunt is aimed at being a project that will be the centerpiece of the portfolio of each member of the development team and art team. As such, the game will be a challenge to our technical abilities, our artistic abilities, and our ability to effectively manage our tasks over an abbreviated development cycle.

Aside from this main objective, we have several goals in mind for this project.

· To complete a polished game that is built to full GDD specifications.

· To create a fun game-playing experience for a wide audience, thus demonstrating that we have the capability to design and build a game with excellent commercial viability.

· To populate the game with fun characters and interesting environments, providing the game player with a rich world to enjoy.

· To write the game code so that it can easily be compiled and built to run on multiple different platforms like Linux and Macintosh, demonstrating our understanding that cross-platform marketability is achievable through careful technical design.

· To incorporate a challenging but fun Artificial Intelligence system that demonstrates that we can give players intelligent opponents that do not rely on cheating to win.

Target Platform

Scavenger Hunt will be written to run on three initial target platforms: PC’s with Windows or Linux operating systems, and Macintosh running MacOS. A separate list of hardware specifications is listed to indicate what is necessary for each platform, though the specifications for Windows and Linux on a hardware level should be the same.

Minimum Requirements:

	Windows
	Linux
	Macintosh

	Windows 98,98SE,2000,XP
	Any version of Linux
	Mac OS 10.2 or higher

	800 MHz Processor
	800 MHz Processor
	G4 800 MHz Processor

	128MB of RAM

(256MB with Windows XP)
	128MB of RAM
	196 MB of RAM

	32MB video card w/ 3D acceleration
	32MB video card w/ 3D acceleration
	32MB video card w/ 3D acceleration

	Mouse and keyboard
	Mouse and keyboard
	Mouse and keyboard

	100 MB free Hard Drive space
	100 MB free Hard Drive space
	100 MB free Hard Drive space

Recommended:

	Windows
	Linux
	Macintosh

	Windows 98,98SE,2000,XP
	Any version of Linux
	Mac OS 10.2 or higher

	1 GHz Processor or higher
	1 GHz Processor or higher
	G4 1.25 GHz Processor or higher

	256MB of RAM

(512MB with Windows XP)
	256MB of RAM
	256 MB of RAM

	64MB video card w/ 3D acceleration or higher
	64MB video card w/ 3D acceleration
	64MB video card w/ 3D acceleration

	Mouse, keyboard, and game pad w/ 4 buttons minimum
	Mouse, keyboard, and game pad w/ 4 buttons minimum
	Mouse, keyboard, and game pad w/ 4 buttons minimum

	100 MB free Hard Drive space
	100 MB free Hard Drive space
	100 MB free Hard Drive space

Development Environment

Scavenger Hunt will be written and developed on Visual Studio 7.1. Testing of the game will also be done in the Visual Studio 7.1 environment. Portability testing for Linux will be done with GCC 3.2 compiler on a Linux system, and portability testing for Macintosh will be done on the Project Builder IDE, which uses the GCC 3.1 compiler.

The project files will be stored and managed under CVS, as will all documentation related to the project including producer’s reports and milestone timelines.

External Tools

To develop Scavenger Hunt, a number of external tools will be used. Care has been taken that only tools that are available to us through license or freeware have been used. The external tools being used are as follows:

Art asset editing:

· 3D Studio Max 5.1 w/ Character Studio 4.0

· Flexporter 3D Studio Max Model exporter

· Gimp 2D Image editor.

· MS Paint 2D Image editor.

File sharing:

· CVS

· WinMerge for file merging conflict resolution.

Documentation:

· MS Word

· LaTeX

· MS Excel

· MS Project

Development Team

Scavenger Hunt is being developed by the Practical Chaos team, a combination of individuals from both the “Trick Shot Golf” and “Drop Drop” games from the previous year. Also, this year, Practical Chaos has the good fortune to be working with a talented 3D art team consisting of three energetic and accomplished young artists.

Scavenger Hunt development team:

	Designer
	Kevin Neece

	Producer
	Jonathan Bryant

	Technical Director
	Douglas DaSilva

	Art Director
	Jemal Armstrong

	Lead Programmer
	Jackson Dunstan

	Product Manager
	Eric Smith

Scavenger Hunt art assets development team:

	Art Lead
	Ryan Hammond

	Character Designer
	Shane McIntire

	Lead Animator
	Colin Turner

Development Time

Scavenger Hunt is scheduled to have a final deliverable build of the game available after 22 weeks of development, with the first playable version available after 8 weeks. The milestone breakdown of expected feature support and implementation can be found in the accompanying project planning timeline.

Development Risks

Scavenger Hunt provides a few technical challenges to our team. The major risk factors involved with the development of this title are broken down as follows:

First Full 3D Graphics Engine

This is the first game project attempted by the team, which features a full 3D world to display and interact with. Building a graphics engine for a 3D game is a non-trivial endeavor, especially when trying to optimize it to effectively render up to eight high-detail models in an environment populated with many other 3D objects.

Also, extracting and using the 3D models built for the game by the art team is a time consuming process. Exporters, file parsers, and management of large amounts of data are all elements of this process.

Attacking this problem will require hard work, dedication, and full attention of two of our team members. However, as of the writing of this document, some of these challenges have already been faced and solved. Though more challenges await, recent progress suggests that the problem of building a 3D graphics engine should not hinder the development of Scavenger Hunt.

Complex Artificial Intelligence System

Scavenger Hunt will feature an AI system that is designed to manage up to seven computer players simultaneously. The computer-controlled opponents have to be able to solve a number of different problems such as path finding around a 3D level. They must figure out which objects to pick up and when. They must make decisions on when to pull a “gag” on a player (an element to the game that allows players to slow each other down), and be able to chase other players. The computer controlled opponents must also decide when to drop objects off at a drop-off point when carrying too many to run very fast, when to approach a door for a “trick-or-treat”, and must be able to adjust its list of tasks by priority on-the-fly.

To assist in the development of a rather complex system, an AI testing module will be built exterior to the game project itself for testing purposes. Though this will assist in much more efficient bug chasing and tuning and ultimately less overall development time, it does add a development delay to the beginning of the development cycle.

This team has not yet attempted an Artificial Intelligence system of this magnitude, so this module will also take the exclusive attention and time of one of the team members.

Development Perks

Aside from the afore-mentioned risks, there are a few aspects to this project, which will greatly increase its appeal.

Professionally Designed 3D Models & Artwork

Scavenger Hunt will be benefited by the talented artwork and animation provided by a talented team of artists. As such, this should add to the appeal to the game and provide an attractive aesthetic, which will make the game a great showpiece for public demonstrations and professional portfolios.

Wholesome Game Play Designed For Family Entertainment

Scavenger Hunt will not contain the use of profanity, adult subject matter, or any other elements that should lend the game to be ill-suited for entertainment by any age range. In recent years, the games industry has experienced a tremendous influx of many game titles with adult-level content; however this is caused a decrease in games that parents can feel comfortable purchasing for their children. Scavenger Hunt hopes to fill this void and offer a title with good potential marketability due to a great lack of competitive titles.

Unique Game Play and Premise

There is no other title on the market or scheduled to be released that is similar to Scavenger Hunt. Thus, Scavenger Hunt will find itself in the unique position of being one of the few titles being released with an original concept and original game play structure. Though sequels to strong products are usually a safe sell, record-breaking sales tend to come from bold, breakthrough products with refreshingly different ideas.

Technical Overview

Coding Guidelines

Scavenger Hunt is going to be written in C++. The project is set up so as not to be dependent on any platform-specific functions so that the game can be simultaneously developed for multiple platforms.

The following are some general coding guidelines for this project.

Naming Conventions

No formal naming conventions will be enforced. Instead, just a series of (hopefully) common-sense suggestions to aid with naming considerations:

· Names of variables and functions should at least hint at their use. Generic names like: “pStuff” are unacceptable.

· Short, one-letter names aren’t acceptable with the exception of variables used for the purposes of a quick iterator.

· Consistent use of prefixes is fine and often appreciated, such as starting pointer variables with ‘p’, and constants with ‘c’, for instance.

· If a function’s purpose is changed for some reason, then the name of the function, and all references to it, should be changed also to reflect the change. It’s not a good thing to be calling a function called “QueryPlayerPosition” to get back the position of all in-game objects, for instance.

 Function Headers

Function headers will be used to precede the definition of all functions in the .cpp files. Header files can have brief function descriptions listed next to the function declarations, but the full explanation of a function should appear once in the function header. This helps make updating the comments with updates to the code itself, an easier task.

Function headers should be set up as follows:

[image: image6.png]
Commenting

Comments should be provided whenever possible so that team members can enter each other’s code and understand what is going on. Placing comments in function headers but not in the functions themselves is unacceptable except when dealing with functions that have only a couple lines of code, or are incredibly straightforward. However, when in doubt, place comments.

C++ style comments “//” are acceptable inside of functions, since it’s makes it easy to wrap a section of code in C style comments “/* */” and not have interference from the existing comments.

Format

It is recommended that lines be restricted to a length of no more than 80 characters across since this helps keep all the code readable within the view window in the Visual Studio development environment.

It is also recommended that function definitions in a .cpp file be ordered so that they appear in roughly the same order as their declarations are to be found in the .hpp files. This makes finding things a bit easier.

Using Constants

To avoid unnecessary and time-consuming rebuilds of the project for simple changes of pre-defined constants and such, #define’s and globally defined constants will not be used in the project.

Instead, in an effort to strive towards cleaner, more efficient programming practices, an easy-to-use scripting language will be utilized to provide information for the game so that the number of rebuilds of the project can be greatly reduced. Use of this scripting language is discussed in detail in its respective section in this document.

Libraries

A few open-source libraries will be used in the project as well, each of which is also set up so as to be cross-platform portable. These libraries will be used by the graphics, input, and sound areas of the game, and can be found listed below by name and function.

· Xerces C++ for XML - Menus

· OpenGL – Graphics

· FreeType – Fonts

· Simple Directmedia Layer (SDL) – Input and application-Window management

· OpenAL – Sound

· Lua - Scripting

Each of these libraries is discussed in greater detail in the sections of this document, which detail the module that will use them.

Testing and Debugging

Scavenger Hunt is going to be built primarily on a PC using the latest version of Microsoft Visual Studio. However, frequent builds and checks will be done on the other two planned supported platforms.

Linux testing will occur be done on a G++ compiler and compatibility issues will be addressed as they arise. Since cross-platform libraries are being used to build the game, and strict compliance with established C++ standards will be observed in game specific programming, very little problems are expected to arise in building a Linux version of the game.

Testing on Mac OS X will be limited because the only computer regularly available doesn’t meet the minimum system requirements. To perform the testing special cases may need to be taken into effect to make the game more playable in order to test different aspects of the game. For example the skybox rendering could be turned off to speed up the frame rate. So the game will need to be tested on a more module type bases instead of as a whole. However, since almost all of the code is the same between the different versions there shouldn’t be any problem that is only noticeable when tested as a whole. To be more robust in testing, we will try to test the game occasionally on a computer that meets the minimum system requirements to try to catch any nasty bugs that are only noticeable to this type of testing

The Project Builder IDE, which is being used to on Mac OS X, includes a debugger to help with debugging.

Game Mechanics

Overview

Scavenger Hunt, like any game project, is a massive undertaking, and needs to be broken down into workable components with its data organzied into logical structures. The overall game mechanics will define how well the game runs, how efficiently each component of the game communicates with other components, and how smooth an experience the gameplay is. Since this is the game’s foundation, careful consideration must be taken in the design and implementation of this aspect of the program.

However, “game mechanics” is made to represent all of the elements of the game that do not fit neatly into any other category, such as graphics, sound, or menus. This encompasses quite a lot of small but important details, and how they are used to connect all of the game’s components into one large, unified application.

To help give tangibility to this rather nebulous area of the game’s structure, a breakdown of all of the different aspects of “game mechanics” can be found in the next few sections.

Game Structures

Player Class

All players need to have certain things in common. Those things are:

· A center position

· An orientation vector

· A camera displacement vector

· A velocity vector

· A collision radius

· A maximum speed value

· A maximum boost value

· A current gag object

· An array of inventory items

· A maximum inventory item value

· A boost meter current / max value

· A character statistic value list

These items can be inserted into a player abstract base class.

Created from this base class, there will be three offshoots: an AI player, a network player, and a local player. The differences between these are outlined below:

	Application
	AI
	Network
	Local

	GetInput
	Get an input request packet from the AI manager.
	Get an input request packet from the game’s received network packet queue.
	Get an input request packet from the local input module.

Level Class

The level currently being played will need to store the following:

· A mesh for the ground

· The level’s size (width and height)

· Level segment subdivisions (splitting the level into smaller pieces for efficient checking with collision and AI navigation.)

· A list of all objects contained in the level

· A list of all hotspot locations and their availability

· A list of all Trick or Treat hotspot locations and their availability

· A location and orientation of the drop box

Game Class

The game class will be in charge of holding anything pertinent to the game. This includes (but is not limited to):

· Current Camera

· A list of all players in the level

· A list of all current game messages

Information Structures

Listed below are the information structures that will be used internally as well as be transferred via network connection:

	Input Request Structure

	Component Name
	Component Description

	Input Data
	This will either be an array of the current input states, or an array of the current input state changes. Either way, this is the main point of the input request packet.

	Game Messages
	Following the input data is a list of game messages. These game messages are any event that occurred that the AI, game, or other players would want or need to know about. Also, player created messages will be sent this way as well.

	Global Player Update Structure

	Component Name
	Component Description

	Player Data
	This section will contain player data for all players. That includes position, velocity, special items, etc.

	Game Messages
	Similar to the input request structure, this section will be devoted to a list of game messages. In this manner, players who receive a global player update will receive all current game messages and can handle them accordingly.

Game Messages

Each time an event happens that any player would want or need to know about it, a game message will be created that will be available to certain player types. Specific game events and their availability to player types are listed below:

	Name
	Description

	Chat Text
	This is simply a string containing text sent by way of player chat.

	Last Item
	This is a warning sent to all players to signify that Player X has almost won the game.

	Game Won
	This message will let all players know that the game has been won and is now over.

	Game Quit
	This message will let all players know that the game server has exited, and the game will stop.

	Trick Activated
	This message will let all players know that a trick has been activated.

	Treat Activated
	This message says that a player has obtained a treat.

	Gag Used
	This message says that a player has used a gag on one or more players.

	Station Accessed
	This message says that a player has accessed a station and the sequence will be sent along with it.

	Sequence Failed
	This message says that a player has failed to input a sequence correctly.

	Station Used
	This message will indicate that a certain station has been used up and will now relocate.

	Item Received
	This message will say which item Player X has received.

	Boost Failure
	This message indicates that Player X has used all boost power up and will be dazed for a short time.

	Effect Worn Off
	This message will indicate that an Event X has worn off for Player(s) X(Y,Z,etc.).

	Drop Off
	This message will indicate that Player X is dropping off items.

Main Loop

The main loop will consist of a state machine interface. Each menu item will essentially lead to another game state.

Game States

The possible states are listed below:

· Main Menu

· Options

· Video Options

· Audio Options

· Controller Options

· Profile Selection

· Profile View

· Character Selection

· Game Lobby

· Countdown

· In-game

· Score sheet

· Credits

State Hierarchy

The linking of game states would be as follows (some states cannot go both ways):

· Main Menu links to:

· Profile Selection

· Options

· Credits (Dead end)

· Options links to:

· Main Menu

· Video Options (Dead end)

· Audio Options (Dead end)

· Controller Options (Dead end)

· Profile Selection links to:

· Main Menu

· Profile View

· Profile View links to:

· Profile Selection

· Character Selection

· Character Selection links to:

· Game Lobby

· Profile View

· Game Lobby links to:

· Character Selection

· Countdown

· Countdown links to:

· In-game

· In-game links to:

· Score sheet

· Game Lobby

· Score sheet links to:

· Game Lobby

State Functionality

These will be the potential state functions that would need to be called upon entry into, actions while in, and exit from the state (some redundancy checking would have to be done so that reentering a state from a “higher” state would not reload resources already available):

· Main Menu

· Entry: Load necessary images

· Entry: Load necessary sounds

· Entry: Initialize any menu constructs if necessary

· Action: State changes

· Action: Exit the game and cleanup

· Exit: Nothing to cleanup (game can exit from here, so exit function can handle cleanup)

· Profile Selection

· Entry: Load Profile files (names)

· Entry: Load necessary images

· Entry: Destroy the Network Manager (if it has already been constructed)

· Action: State changes

· Action: Select a profile

· Exit: Cleanup Profile name list

· Profile View

· Entry: Load necessary images

· Action: State changes

· Character Selection

· Entry: Load Character models

· Entry: Load Character statistics

· Entry: Load necessary images

· Action: State changes

· Action: Select a character

· Exit: Nothing to cleanup

· Lobby

· Entry: Initialize the Network Manager

· Entry: Load all available game types (names)

· Entry: Load all available game levels (names)(Only one to start.)

· Entry: Load necessary images

· Entry: Initialize the Lobby slots to appropriate values

· Action: State changes

· Action: Select a game type

· Action: Select a level (in case future levels are supported.)

· Action: Join another game

· Action: Open a slot

· Action: Close a slot

· Action: Create an AI opponent

· Exit: Nothing to cleanup

· Countdown

· Entry: Load all object models

· Entry: Load level mesh

· Entry: Initialize AI Manager

· Entry: Initialize all Game structures

· Entry: Load all HUD images

· Entry: Randomly select station locations and item lists

· Entry: Load all sounds and anything that has been missed

· Entry: Menu images and data that will not be used can be freed for now

· In-Game

· Entry: Nothing to load

· Action: State changes

· Action: Game input (see In Game Loop for details)

· Exit: Update local player profile

· Score sheet

· Entry: Load all necessary images

· Action: State changes

· Exit: Cleanup all object models

· Exit: Cleanup level mesh

· Exit: Cleanup AI Manager

· Exit: Cleanup all Game structures

· Exit: Cleanup HUD images

· Exit: Cleanup sounds and anything that has been missed

In Game Loop

This information is all part of a “Game” class. The “Game” class will not know itself whether it is a Client or Server, but it will call a pointer to each function. Prior to this loop’s creation, the network manager in the lobby will have set up this pointer. The following list shows the steps that each application will follow:

Step 1 – UpdateTime()

(UpdateTime is the period where time values will be updated, frame rates are displayed, and anything else that needs to happen first each loop. This is the same for both Server and Client, so it is not a function pointer.)

Step 2 – UpdateAI()

	Server
	Client

	This is the time for all AI updating functions to be called. AI should have access to all available information that it needs: game messages, player positions and info, etc. As an end result, each AI player should create or contain an input request to be available when needed.
	This function will be NULL.

Step 3 – UpdateMessages()

	Server
	Client

	The Network Manager should use this time to grab any network messages and put them into a queue or list of some sort. Also, only messages of importance to the Server should be recorded. If there are no clients, then this function should be NULL.
	The Network Manager should use this time to grab any network messages and put them into a queue or list of some sort. Also, only messages of importance to the Client should be recorded.

Step 4 – MakeCorrections()

	Server
	Client

	This function will be NULL.
	During this time, the Client will look for a global player update. If it finds one, it will react accordingly by changing all player positions, statuses, and recording any game messages it contains.

Step 5 – GetAllInput()

	Server
	Client

	The Server will loop through each player in the game’s player list and “ask” that player for input. In all cases, a list of player input requests will be formed and stored.
	The Client will only “ask” the local player for its input. It will form an input request for the local player only.

Step 6 – UpdatePlayerData()

	Server
	Client

	This will be a hefty function for the Server. All players’ input requests will be applied. Game messages will be created if necessary. Game messages from other players will be acknowledged.
	All players will move and update based on last known positions and velocities. The local player can update with its requested input.

Step 7 – BuildEvent()

	Server
	Client

	The Server will build a global player update containing all the players’ current positions, velocities, and game messages. All game messages will be handled for the local player, and stored locally for the AI to access next loop.
	The Client will simply grab the input request that was already built.

Step 8 – SendMessages()

	Server
	Client

	The Server will send a global player update to all players if a pre-defined time amount has elapsed.
	The Client will send its input request to the Server.

(The next two steps are not function pointers as they do the same thing.)

Step 9 – PlaySounds()

Step 10 – RenderScene()

Player Actions

Player’s send the server input requests that will be interpreted by the server during the UpdatePlayerData function as actions. Actions will be assigned based on input from the players as described below:

Escape – Bring up in-game menu

· This should be handled client side for every player. This button will instantly bring up the in-game menu screen. Just to repeat, this input button will not be sent via input request.

Movement Keys – Move the player and solve sequences

· For movement, the combination of buttons pressed will indicate the player’s new requested velocity. This will replace the previous velocity. When the player’s position is updated later in this function, collisions will be handled.

· For sequence solving, the buttons will represent the sequence indicators. If the sequence is failed, a message will be sent informing the player. If the sequence is passed, the station will be moved and the player will receive an Item obtained message.

Turning Keys – Turn the player’s camera

· If a turn is detected, the player’s camera will be updated. This is all that will happen for turning. There will be no messages sent.

Chat Key – Allow the player to type in a message

· This key can also be handled client side for all players. When this button is pressed, the local player will stop accepting “control” input and will now accept ASCII characters to display onscreen as the desired “chat.” Once the player has finished typing and pressed “Enter,” the local player input will start accepting “control” input once more, and the chat message will be attached to the next input request that is sent out.

Search / Accept – This button will be responsible for searching and solving sequences

· When the search button is pressed, the player will check collision against all stations in the same sector as the player. If a station collision is found, the player will receive a station access message with the sequence to solve. If no stations are found, collision with the drop box will be checked next. If a collision with the drop box occurs, the player will receive a display list message. If the drop box collision does not occur, then this action does nothing. At this time a failed sound may be played to indicate this fact.

· When a list is being viewed, this button will remove the player from the view list state.

· For sequence solving, this button will represent the button sequence indicator. If the sequence is failed, a message will be sent informing the player. If the sequence is passed, the station will be moved and the player will receive an Item obtained message

Use Gag / Cancel – This button will attempt to use a gag or cancel a sequence

· When the use gag button is pressed and the player currently has no gag, a failed sound may be played to indicate this fact.

· When this button is pressed and the player currently has the Whoopie-Cushion gag, a Gag Attempt message will be sent to all players simply for display purpose (to show the animation). Once the required time has elapsed, a station-sized collision circle centered directly in front of the player will be created to check collision against all other stations. If a collision occurs, a failed sound may be played to indicate this fact. If no collision occurs, a station with the “fake” property will be added to the station list and a Gag Used message will be sent to all players indicating that a new station has been added.

· When this button is pressed, a Gag Attempt message will be sent to all players simply for display purpose (to show the animation). Once the required time has elapsed, the gag collision circle will be checked against all other players’ current positions. A Gag Used message will then be sent to all players indicating who was hit (if anyone) by the gag.

· When a list is being viewed, this button will remove the player from the view list state.

· For sequence solving, this button will remove the player from the solving sequence state. A Failed Sequence message will be sent to the player.

Boost – This button will conditionally increase the player’s max speed

· When this boost button is pressed, the player’s boost flag will be set and the boosted max speed will be used for movement. The current boost value will be decreased by the decreasing amount also. If this value hits zero, the player will be sent a Boost Overflow message. The boost value will increase (up to the maximum value allowed) each loop if the button is not pressed.

Once all input has been handled, positions will be moved and object collisions will occur. Once all player positions have been updated, the server will create the global player update and attach all game messages that were generated during this time.

Graphics

Overview

The design goals of the graphics engine for Scavenger Hunt are two-fold: platform independence, and implementation independence. Creation, management, and destruction of the application window are operations that are platform dependent. Operations for aquisition, storage, and display of graphics resources are dependent on the application-programmer interface (API) provided by the typically low-level graphics implementation.

The method chosen to achieve this independence was the C++ concept of the abstract base which declares interfaces that must be defined by its inheritor. The user of the abstract base is not required to have knowledge of the actual inheritor, and this allows for the divorce of the interface from the implementation, achieving the independence desired. The highest level of the application (main) will of course have full knowledge of the inheritor, but the primary users of the graphics engine will know only the interface.

The graphics engine will support only a single primary display window, and this restriction will allow for the use of the programming concept of a singleton. A singleton is an object that has strictly one instance in a program. The singleton concept also allows for explicit control over an object's lifetime. In addition, the singleton shares a property of globally defined objects by being easily accessible. All three of these traits are perfectly matched to the needs of the graphics engine.

Graphics APIs come in two flavors: persistant and immediate. Immediate graphics APIs must be told frame-by-frame what to display, whereas a persistant graphics API retains a memory of the scene. The graphics engine will be persistant, and will also handle resource management.

There are two key concepts for the graphics engine: resources and objects. Resources are data which is used to build objects. Both resource and object lifetimes are explicitly controlled by the graphics engine. Resources can take the form of image data, geometric data, animation data, etc. Objects exist on essentially two levels: the upper level, which the user sees, and the lower level, which the graphics engine sees. The user is able, through the upper level of the object, to make changes to how the object is drawn by the graphics engine. The upper level can therefore be viewed as a sort of remote control, through which the user quickly and efficiently interacts with the graphics engine. The lower level is intended to contain the implementation details used by the graphics engine, but not intended to be modified by the user.

Texture Namespace

The Texture namespace is part of the Render namespace and supplies the fundamental classes for loading and displaying images. There are four main types of classes stored in this namespace: image, texture, and sprite.

Image

The Image class is for loading and internally storing information about images. The Image class only supports 8, 24, and 32 bits per pixel images, and it contains a palette for use by the 8 bits per pixel format. The base structure can be manipulated outside the graphic engine, but the graphic engine owns and keeps track of every image that is created so a user must go through the graphic engine to get access to an image. There are two ways to get a new image from the graphic engine:

	Graphics::LoadTheImage

	Return Value
	Description
	Arguement List

	Image *

	Loads an image
	const std::string & fFilename = The filename for the image

	Graphics::CreateImage

	Return Value
	Description
	Arguement List

	Image *

	Creates a black image
	int fWidth = The width of the image

int fHieght = The height of the image

int fBpp = The bits per pixel of the image

LoadTheImage takes in a filename and will open the file to determine the file format before passing it off to the desirable loading method. It determines the file by reading the images magic number instead of just looking at the extension. It will have simple BMP loading which supports bottom up version 3.x/NT and version 4 formats in 8, 24, and 32 bits per pixel formats. For good lossless compression the PNG file format is supported with the implementation created with out the use of external libraries. Do to the homemade code for PNG loading the PNG support will be limited to 8 bit components only with no interlacing. It does support 8 bit palettes, grayscale, grayscale with alpha, RGB and RGBA images. JPEG will also be supported with the use of an external library; however, we may remove this support if we find out that we are not using the format. The image returned will be the image loaded or NULL in the case that there was a problem loading the image.

CreateImage will create a blank all black image from the parameters passed in to the method. This allows an image to be created for copying other images to.

Once an Image is created it’s size can’t be changed and only the bits per pixel can be changed to 24 or 32 through the ConvertImageToBpp(int fBpp) method. The image is stored in a single dimensional array where the first section represents the upper left corner of the image. In 24 bits per pixel format the values are stored in RGB order and in 32 bits per pixel they are stored as RGBA. There are also four methods for converting the image into a byte array of a slightly different format. ConvertToRGB() and ConvertToRGBA() will create a new array for the image where the image is in 24 bpp or 32 bpp respectively. The ConvertToRGBFlip() and ConvertToRGBAFlip() methods are similar to the previously mentioned methods except that the image array they returned contains the image flipped vertically, so that the lower left section of the image is the first part of the array.

Besides just manipulating the pixel bits directly the image also contains a simple blit function that allows a section of one image to be copied to the other image. Initially this is just a simple one to one copy, but possibly more complex blitting functions could be added to allow scaling, color keying, and possibly even transparency.

To free an image that is not currently being used by another object in the Texture namespace you can pass the image into the graphic engine method:

	Graphics::DeleteImage

	Return Value
	Description
	

Arguement List

	bool

	Tries to delete the image
	Image * fImage = The image to try to delete

This will return true if the image was freed or false if it was not. A return value of false signifies that the image being used by another object and so deleting it is not possible at the moment.

The graphic base is a friend to the image class so it can create, load and destroy the images. The 3D package is able to use the protected methods of the base class to create, load and destroy the images.

Texture

This is the graphic engines internal structure for storing textures. This object is graphic engine specific and is not accessible to the user. The only thing the user knows about the texture is the textures resource id. It is used for keeping track of texture resources so they could be reloaded if they need to be. The texture is associated with an image and can only be created from an image. The texture has a special implementation for the graphic engine since the creation of the texture from the image is different between different 3D packages. The OpenGL texture has the constructor doing all the setup needed in OpenGL and the destructor will do any OpenGL calls for clean up. Also all of the overloaded methods have OpenGL specific calls such as reloading the texture. The texture can only be created from a power of two image. A user can create a texture by calling one of the following methods of the graphic engine:

	Graphics::CreateTexture

	Return Value
	Description
	Arguement List

	ResourceID

	Creates a texture
	Image * fImage = The image to create a texture of

bool fMipmap = If the texture should use mipmapping

bool fUseAlpha = If the texture should be created with alpha values

	Graphics::LoadTexture

	Return Value
	Description
	

Arguement List

	ResourceID

	Loads an image then creates texture
	const string & fFilename = The filename of the image to load

bool fMipmap = If the texture should use mipmapping

bool fUseAlpha = If the texture should be created with alpha values

The CreateTexture creates a texture that is associated with an image. The fMipmap parameter is for trying to get the texture to use mipmapping. However, if the image is not a valid mipmapping size of 512x512, 256x256, 128x128, or 64x64, the image will not be mipmapped. The fUseAlpha is for specifying that the texture should be stored with alpha values so it can be used with for transparency. This value only makes sense to use with 8 or 32 bit colors because they have alpha values. It doesn’t hurt anything to use alpha with a 24-bit color image but its transparency will be defaulted to 255 or no transparency. Setting this value to true will have the texture stored in OpenGL using the RGBA while if it was false it will only be stored in RGB meaning it will use less memory if the variable is false.

The LoadTexture method simply just calls LoadImage(), and then LoadTexture() so the user doesn’t have to worry about the intermediate steps if they don’t want to.

With the association of the texture with the image the image can’t be destroyed until the texture is destroyed. Also if the image is changed the texture will display the change only when the texture has been reloaded. To reload the texture the user can call the method of the graphic engine:

	Graphics::ReloadTexture

	Return Value
	Description
	Arguement List

	void

	Reloads a texture
	ResourceID fID = The id of the texture resource

If you lose or need the image object associated with a texture you can call the graphic engine method:

	Graphics::GetImageFromTexture

	Return Value
	Description
	Arguement List

	Image *

	Gets the image assocated with the texture
	ResourceID fID = The id of the texture resource

There is also a method in the graphic engine that allows rendering to a texture:

	Graphics::RenderToTexture

	Return Value
	Description
	Arguement List

	ResourceID

	Renders the screen to a texture
	ResourceID fTexture = The id of the texture resource

This will only render to a texture if the texture meets the requirements for being mipmapped and is not setup for mipmapping. If the texture doesn’t meet this requirement the NULL resource ID will be returned, else the resource ID that was passed in will be returned.

Sprite

Any plane displaying of a texture or image that is not on a mesh must be displayed using a sprite. A sprite object has two displaying types: world sprite and screen sprite, which needs to be specified at the creation of the object. The sprite object is accessible to the user for them to manipulate it. The sprite object is derived from the base GraphicObject and also contains UV coordinates as well as is a screen sprite variable. The UV coordinates are used to distinguish the portion position of the image to map to the texture. These values range from 0 to 1 in both the x and y direction and 0, 0 represents the bottom left corner of the image. The sprite also has a 3D package specific implementation that is derived from the base sprite class. The OpenGL sprite just handles any specific methods for the sprite that is OpenGL dependent, such as anything that has to do with the coordinate system.

A world sprite is a sprite that has full 3D position. This means that if the camera moves the sprite will be displayed differently depending on where it is with respect to the camera. The screen sprite only has a 2D position, however it still has full orientation and scaling capabilities. Also the screen sprite is drawn after the normal rendering of the scene so it will be rendered on top of the normally rendered scene. The screen sprites position is with respect to the screen so if the camera moves the sprite will remain in the same position on the screen. The sprite has a method for positioning a screen sprite:

	SpriteObject::SetScreenPosition

	Return Value
	Description
	Arguement List

	void

	Sets the sprite with respect to the upper left corner
	double fX = The x location

double fY = The y location

This will position the sprite with respect to the screen. The upper left corner of the screen is defined as 0, 0 and the bottom right is defined as the Sprite constant Screen_Size, which is the value for both the x and y direction. By calling this value with 0, 0 passed in the sprite will be positioned so that its upper left corner is on the upper left corner of the screen. However if the sprite is then rotated the sprite’s center will stay in the same place but the edges will move away from their current positions.

The sprite also has a useAlpha variable which specifies if the sprites should be drawn using the textures alpha values. However, for this to work the texture must have been created with the fUseAlpha variable set so it will have alpha to use. Although it will not hurt anything if you turn the alpha use on for the sprite when the texture is not set up for alpha, the only result will be that the sprite will be displayed the same as if the useAlpha variable wasn’t set.

Another variable that the sprite has is the triangleDraw variable which tells how the sprite should be drawn. By default this value is set to Quad_Draw, which means the sprite is drawn as a quad that has four corners. However, this value can also be set to one of the triangle vertexes constants such as Top_Left, and Bottom_Right. When the variable is set to one of these values the sprite will be drawn as a triangle with the first vertex drawn being the one that resembles the constant given and then the other two vertexes will be chosen by going counter clockwise from current vertex. For example if you choose Bottom_Left, the next vertex will be Bottom_Right followed by Top_Right.

Sprites also have a useColor variable which when it is true specifies that a color overlay for the sprite should be used. The color overlay is stored in the colorOverlay variable which stores the color in RGB 0-1 order with 0 being black and 1 being white. If the overlay value is white the sprite should not look different. However if the overlay is black the sprite will probably look all black. Other ranges of colors should simply tint the sprite to that specific color.

The scale defines the size of the sprite, however the Z value of the scale is always ignored. So if the size is 1x1 the sprite will be the normal size. In the screen sprite coordinates this would mean that the sprite is two units wide (One for the right of the center and one for the left of the center) and two units tall. The position, rotation and scale for both displaying formats of the sprite are with respect to the center of the sprite.

The sprite can be created through the graphic engine method:

	Graphics::CreateSprite

	Return Value
	Description
	

Arguement List

	SpriteObject *

	Create a sprite
	ResourceID fTexture = The id of the texture resource

bool fIsScreenSprite = If the sprite is a screen sprite

The base SpriteObject class has protected constructor and destructors so that the normal user can’t destroy them. Instead they will need to pass the sprite into the graphic engine for deleting it.

World Object

The world object is a special object with respect to the graphic engine. This object is defined as chunks of the terrain or ground of the scene as well as the skybox or sky cylinder. Although the terrain chunks are just a mesh, it is treated differently from normal meshes in because it will almost always be partly seen and partly not seen. Because of this the terrain chunks are stored in a quad tree with each chunk containing its own branch of the tree. Each chunk of the terrain will be split up into even more pieces to speed up the clipping of sections of the level.

The World object is derived from the graphic object. However, since it represents two objects, the position, rotation and scale of the object is in respect to both of the objects. So moving the position will move both the mesh and the skybox the same amount.

The skybox or sky cylinder is the other part of the world object. The skybox is used to give the background of the scene a colorful and natural look. The skybox uses its own texture resource separate from the terrain’s. Only a few properties of the skybox are accessible to the user through the world object. The main properties that are accessible are the cylinder’s position, rotation and scale with respect to the terrain. This is so the skybox can be positioned differently with respect to the terrain. The values set for these properties will be with respect to the overall graphic object’s values. So if the main position is (100,0,40) and the skybox’s position is set to (10,10,10) then it will be positioned at (110, 10, 50) because the skybox position is relative to the world object’s position.

The graphic engine creates the WorldObject by reading from a stream that contains the world object structure. The format of the world object is:

	Any text that is not in a specific tag area is ignored. The main tag areas are displayed in bold
The filename of the texture to use for the skybox is defined here

<Skybox>

skyboxtexture.png
This is a list of all the textures that can be used as the ground.

The count defines how many textures are defined in the section

They are stored in a <id, filename> pair.

The id allows the texture to be referred to later in the file for the textures of the meshes.

<Ground_Textures>

Count: 3

1 filename1.png

2 filename2.png

35 filename35.png
This is a list of all the level chunks. Each level chunk needs to be relative to the whole level. This means that the level pieces needs to be centered on a global position which all the other level pieces are centered around.

The count defines how many level chunks that are defined in the section.

Note there cannot be more than 64 different level chunks.

They are stored in a <id, filename> pair.

The id is the texture to use for the mesh. The filename needs to be a filename for the level chunk which is stored in the normal mesh format supported by the graphics engine.

Note: The meshes can be grouped together for better optimizations. For example you can group them by texture or group them by area.

<Ground_Meshes>

Count: 4

1 levelmesh1.mesh

35 levelmesh2.mesh

1 levelmesh3.mesh

2 levelmesh4.mesh
This is the end of the file format

The WorldObject can be created using the graphic engine method:

	Graphics::CreateWorldObject

	Return Value
	Description
	Arguement List

	WorldObject *
	Creates the world object
	istream * fStream = The stream containing the world level format

The graphic engine will store all the textures and meshes that it creates and then free them when the world object is destroyed. There can only be one world object, so until a created object is destroyed a new one can’t be created. If the CreateWorldObject method is called while a WorldObject still exists the pointer to the current world object will be returned, even if the NULL is passed in instead of a valid info structure.

	WorldObject

	Variable Type
	Variable Names
	Description
	Supported Values

	bool
	DrawSkyBox
	Turning the drawing of the skybox on and off
	true and false

	Point3D
	SkyboxPos
	The skybox difference in position compared to the world
	

	Orientation
	SkyBoxOrientation
	The skybox difference orientation compared to the world
	

	Point3D
	SkyBoxScale
	The skybox difference in scale compared to the world
	

	int
	SkyBoxSides
	The number of sides for the sky box/cylinder
	>=3

	double[2]
	SkyBoxTextureV
	The upper and bottom positions of the texture to use
	

	double
	SkyBoxWrapping
	The number of times the texture section should be repeated around the whole skybox
	>0

	ResourceID
	SkyBoxTexture
	The texture for the skybox
	const

Methods and Structures
Interface
The graphics engine offers interfaces for setting the camera and adjusting the size of the rendering screen.

	SetCamera

	Return Value
	Description
	Argument List

	void
	Determines the view that will be used in the next rendering pass.
	const camera& Camera = the camera’s new location and orientation.

	SetSize

	Return Value
	Description
	Argument List

	void
	Changes the size of the visible surface upon which the graphic engine renders the scene.
	Int fWidth = the desired width of the surface in pixels.

Int fHeight = the desired height of the surface in pixels..

In addition, there are two rendering functions, one which should be called when the scene is to be updated, and one for rendering the current scene into a texture resource.

	RenderAll

	Return Value
	Description
	Argument List

	void
	Causes the graphics engine to immediately display all graphic objects in their respective locations and orientations.
	void

	RenderToTexture

	Return Value
	Description
	Argument List

	void
	Similar to RenderAll, except the current scene is rendered to a texture resource.
	ResourceID fTexture = the identifier of the texture resource to render the current scene to.

The graphics engine also supplies an interface which triggers an update of all animated mesh objects.

	UpdateAllAnimation

	Return Value
	Description
	Argument List

	void
	Based on the time value supplied, will update all animated mesh objects.
	Int fCurrentTimeInMilliSeconds = the current time (from some arbitrary starting point) in milliseconds.

For purposes of managing the graphics engine singleton, there are three static functions.

	Create

	Return Value
	Description
	Argument List

	Graphics&
	Initializes the graphics engine and creates the singleton.
	Int fWidth = the initial width of the rendering surface.

Int fHeight = the initial height of the rendering surface.

SwapBufferCallback fCallback = a function pointer that will be called by the graphics engine in order to display the current rendered image.

	Instance

	Return Value
	Description
	Argument List

	Graphics&
	Returns the single instance of the graphics engine.

If the graphics engine has not be initialized successfully, an exception of type SetUpFailure will be thrown.
	void

	Destroy

	Return Value
	Description
	Argument List

	void
	Cleans up and shuts down the graphics engine, including invalidating the singleton.

If the graphics engine has not be initialized successfully, an exception of type SetUpFailure will be thrown.
	void

Resources and Objects

The graphics engine offers the user several functions for aquisition of graphics resources and creation of graphic objects based on these resources. The user of the graphics engine can control how these graphic objects are displayed through a common interface offered by the base graphic object.

	GraphicObject

	Variable Type
	Variable Names
	Description
	Supported Values

	geometry::Point3D
	Pos
	The position of the object in the world.
	All values are supported.

	Bool
	DrawOn
	Determines if the object is drawn.
	True = draw the object.

False = skip drawing this object.

	const ResourceID
	Resource
	The primary resource used to draw this object.
	Any valid resource id, and the NullResourceID.

	geometry::Orientation
	Orient
	The orientation of the object in the world.
	All values are supported.

	GetScale

	Return Value
	Description
	Argument List

	const geometry::Point3D&
	Returns the scaling factor applied to this object. Each of the x, y, and z axes are scaled independently.
	void

	SetScale

	Return Value
	Description
	Argument List

	Void
	Sets the scaling factor to be applied to this object.
	geometry::Point3D& fScale = the new scaling factor to apply.

Mesh

The graphics engine supports a type of resource which is a collection of three-dimensional vertices that define a basic three-dimensional object. The mesh resource can then be used to make any number of mesh objects.

A mesh is defined as a series of triangles that reference a collection of geometric points in three-space and a collection of two-dimensional texture coordinates.

The actual representation of a mesh is completely hidden from the user of the graphics engine. The only handle the user has is the ResourceID returned by the graphics engine which can be used to create a mesh object.

	Graphics::LoadMesh

	Return Value
	Description
	Argument List

	ResourceID
	Attempts to load a mesh resource from the indicated stream.
	std::istream& fStream = the stream containing the mesh resource.

Mesh Object

A mesh object is a graphic object that utilizes a mesh resource and can be manipulated by the user of the graphics engine. The mesh object has a few public data members that are inherited from the GraphicObject base class. It also has a two-argument constructor that takes not only a mesh resource id, but also a texture resource id.

	MeshObject

	Variable Type
	Variable Names
	Description
	Supported Values

	const ResourceID
	Texture
	The texture resource used to draw this object.
	Any valid texture resource id, and the NullResourceID.

	MeshObject

	Return Value
	Description
	Argument List

	Ctor
	Creates a MeshObject given the parameters supplied.
	ResourceID MeshResource = the mesh resource to use.

ResourceID TextureResource = the optional texture resource to use.

Animated Mesh

The graphics engine supports a special type of mesh resource that shares the properties of the mesh resource, but adds data members which define some collection of animations. Each animation consists of a collection of bones, which themselves define a translation and rotation which is applied to all of the geometric points in three-space that make up the mesh that they are associated with. In short, each geometric point in the mesh is linked to a bone. When this bone moves, the vertex moves to keep its relative position with respect to the the bone constant.

Similar to the mesh resource, the representation of an animated mesh is completely hidden from the user of the graphics engine. The user is able to use the ResourceID returned by the graphics engine in order to create new animated mesh objects.

	Graphics::LoadAnimMesh

	Return Value
	Description
	Argument List

	ResourceID
	Attempts to load an animated mesh resource from the indicated stream.
	std::istream& fStream = the stream containing the animated mesh resource.

Animated Mesh Object

The animated mesh object adds to public data members to those inherited from the mesh object that allow the user of the graphics engine to control how the animation is displayed.

	AnimMeshObject

	Variable Type
	Variable Names
	Description
	Supported Values

	Double
	AnimationRate
	The rate at which the animation is updated.
	Any valid floating-point number.

	Int
	AnimationState
	The animation sequence to use.
	Any valid animation sequence (must be strictly positive).

	AnimMeshObject

	Return Value
	Description
	Argument List

	Ctor
	Creates an AnimMeshObject given the parameters supplied.
	ResourceID AnimMeshResource = the animated mesh resource to use.

ResourceID TextureResource = the optional texture resource to use.

Font

The graphics engine will support font resources that are to be used to display text. As with all graphic resources, the representation is hidden from the user. However, the difference with fonts is that the graphics engine doesn’t represent them with ResourceIDs, instead using pointers directly. This allows the Text object to be separate from the graphics engine.

	Graphics::LoadFontFamily

	Return Value
	Description
	Argument List

	Const FontFamily*
	Attempts to load a font family resource from the indicated file.
	Const std::string & fFilename = the file name that contains the font family to load.

	Graphics::ClearFontFamilies

	Return Value
	Description
	Argument List

	Void
	Clears the cached FontFamilies.
	Void

	
	
	

Text Object

The text object is not in the same class hierarchy as the other graphic objects. It takes font properties and a string of text and creates an image from them.

	Text

	Variable Type
	Variable Names
	Description
	Supported Values

	Std::String
	String
	The text string to be rendered.
	Any string of characters.

	Text

	Variable Type
	Variable Names
	Description
	Supported Values

	int
	HPointSize
	The horizontal point size for the text.
	Any integral value.

	Text

	Variable Type
	Variable Names
	Description
	Supported Values

	int
	VPointSize
	The vertical point size for the text.
	Any integral value.

	Text

	Variable Type
	Variable Names
	Description
	Supported Values

	Bool
	Bold
	Determines if the text will be rendered in bold face.
	True or false.

	Text

	Variable Type
	Variable Names
	Description
	Supported Values

	Bool
	Italic
	Determines if the text will be rendered in italic face.
	True or false.

	Text::Render

	Return Value
	Description
	Argument List

	Text&
	Renders the current text string using the current text properties into an image.
	void

Sound

Overview

Since the very beginning of video games, sound has been an integral part of the gaming experience. It engages a second sense in the game and reinforces the gamplay by immersing the player. Scavenger Hunt will obviously include sound and music in its gameplay to assist in the setting the game in the 1950's and to provide for audio feedback for the game's actions and events. Further, we will employ three-dimensional audio as a means to place the sounds in the world, and further place the player into the world of sounds in the same manner that three-dimensional video places the player into the world of graphics.

Tasks

Loading and Streaming Sound Files

Obviously we will not be generating dynamic music, so prerecorded music must be provided to us. If we are to load this music, we must be able to load the files that contain it. Our chosen format for sound data is the Ogg Vorbis format. We have chosen this because it is free of any royalties, an open standard, and compresses to very small sizes while maintaining above-average audio quality. Even with this compression, playback of the sounds requires an uncompressed data buffer to do so and loading in multiple files can quickly use up a lot of precious system memory. Therefore we will be employing the technique of streaming to load in the files as we need them.

To load these sound files we will make use of the free, open-source, and cross-platform official Ogg Vorbis library. It is easy to use and will allow us to quickly be able to load and stream in sound files.

A Choice of Sound Library

We must choose a sound library to interact with the operating system's own native sound support. That library must be feature-rich enough for our needs, which are rather demanding. The library must be cross-platform, able to play three-dimensional sound, and be easy enough to use that it doesn't take up a significant portion of our, already limited, time to implement. Our choice for this is the OpenAL library. It is free, open-source, cross-platform, and provides a familiar interface similar to OpenGL, which we are also using. The library is developed for the express purpose of usage in a video game and at its core provides for three-dimensional sound including such advanced features as the doppler effect, pitch and gain control, and sound sources sharing sound buffers.

Sound Buffers

Closely tied to the sound loading, sound buffers are needed to represent the actual audio data that will be played back to the player. The buffers must be able to load data from the Ogg Vorbis sound files and be able to stream from those files in an easy way. The sound buffer will also need to be able to be used by multiple sound sources and must minimize its memory usage by efficient streaming. All of these tasks are commonplace programming techniques and we will implement them all easily.

Sound Sources

Sound sources represent a location in the world that is playing sound. This could logically be a transistor radio, a screetching drop box lid, or a player exclaiming a taunt. These sources must make use of the above sound datas to provide their playback. They must also provide all the functionality one would usually link with the entire sound system- volume control, pitch control, and sound file selection, as well as three-dimensional variables such as location, velocity, and playback control.

Most of these tasks are provided by OpenAL as its basic functionality. The difficult part of this implementation is the using of sound buffers external to the source and dealing with the problems found therein. We must also deal with streaming of the sound from the source and the problems that arise from that. The sound will be able to accomplish these tasks by tight C++ code that does not allow for failure and integrates well with the sound manager.

The Sound Listener

In the three-dimensional world of sound, the listener is the equivalent of the three-dimensional world of video's camera. There is only one of them and they have certain properties much like sound sources. They have the ability to have a position, a velocity and a volume they hear at. Thankfully, all of these concerns are handled automatically by the OpenAL library as part of its core three-dimensional sound capabilities.

The Sound Manager

The game will feature exactly one sound manager, accomplished through the usage of the C++ singleton pattern, that will manage all sound and provide an interface to the game's sound. It will hold all of the sound datas, sound sources, and the listener within it and use that position to effectively deal with the concerns of shared buffers, streaming, and efficient file loading.

Requirements

The sound sources and listener will require almost no memory and exactly no disk space as they are simple objects that do not require complex or large amounts of data to be stored. In stark contrast, the sound datas will require quite a lot of memory to store their buffered sound datas. Uncompressed sound data is a requirement of playing sound through a sound device just in the way that uncompressed video data is a requirement of the video device to display video data. This sound data can be large, but streaming the data helps a lot to minimize that requirement. A modest buffer is several kilobytes in size and if we expect to have several sounds playing at once then we should expect a few megabytes of memory to be used by the sound buffers. The sound manager requires very little memory other than the datas that it holds. This is mainly memory used to keep track of the sound datas and sources, not to hold actual sound data itself.

As with memory usage, the sound data is the only class using a substantial amount of disk space. However, disk space usage is greatly reduced by the fact that we are using Ogg Vorbis sound files, which are very compressed. In the real world, this means that a three minute song should be around three megabytes of on-disk size. Also, to access and stream these sound files we must be able to frequently read sound data from the disk. This should be the main disk access of the game, except for other areas of the game's loading sequences, such as those for maps and graphics.

cSoundData

	Data Variable Members

	Variable Type
	Variable Names
	Description
	Supported Values

	OggVorbis_File
	mVorbisStream
	The Ogg Vorbis file we represent.
	NULL = No file.

Other = The OGG Vorbis file.

	Alenum
	mVorbisFormat
	The format of the vorbis stream.
	AL_FORMAT_MONO16 = Monural sound.

AL_FORMAT_MONO16 = Stereo sound.

	vorbis_info*
	mVorbisInfo
	Information about the vorbis stream.
	NULL = No vorbis information.

Other = Vorbis information.

	std::string
	mFileName
	The filename we read from.
	All valid filenames.

	unsigned int
	mBufferSize
	Size of the buffer of audio data.
	All values.

	ALuint*
	mBufIDs
	The OpenAL buffer IDs for this data.
	An array of valid OpenAL buffer IDs.

	UseFile [protected]

	Return Value
	Description
	Argument List

	void
	Use a specified file to read from.
	std::string filename – The file to use.

	Buffers [protected]

	Return Value
	Description
	Argument List

	void
	Gets the OpenAL buffers we represent.
	ALuint*& - Used to return the array of buffers.

unsigned int& - Used to return the number of buffers we are returning.

	StreamToBuffer [protected]

	Return Value
	Description
	Argument List

	void
	Streams from the file to a given buffer.
	ALuint – An OpenAL buffer ID to stream to.

	bufferSize

	Return Value
	Description
	Argument List

	unsigned int
	Gets the size of the buffer.
	void

	setBufferSize

	Return Value
	Description
	Argument List

	void
	Sets the size of the buffer.
	unsigned int – The new size for the buffer.

cSoundSource

	Data Variable Members

	Variable Type
	Variable Names
	Description
	Supported Values

	cSoundLocation
	mSoundLoc
	The source's location.
	Any

	cSoundVelocity
	mSoundVelocity
	The source's velocity. Has no effect on location.
	Any

	float
	mVolume
	The volume of the source.
	Non-negative values. Greater than one may be clipped.

	bool
	mLooping
	Whether or not the sound is looping.
	Any

	float
	mPitch
	The pitch of the sound.
	Any

	SOUNDSTATE
	mSoundState
	The sound's playstate.
	STOPPED = Stopped.

PAUSED = Temporarily stopped.

PLAYING =

Playing.

	ALuint
	mID
	The OpenAL ID of the source.
	Any valid OpenAL ID.

	cSoundData*
	mSoundData
	The sound data we play.
	NULL = No sound data.

Other = Pointer to sound data we play.

Note: Only non-trivial methods are listed.

	UseSoundData [protected]

	Return Value
	Description
	Argument List

	void
	Use a specified sound data.
	cSoundData* csd – Sound data to use.

	Update [protected]

	Return Value
	Description
	Argument List

	void
	Update streaming.
	void

cListener

	Data Variable Members

	Variable Type
	Variable Names
	Description
	Supported Values

	cSoundLocation
	mLocation
	The listener's location.
	Any

	cSoundVelocity
	mVelocity
	The listener's velocity. Has no effect on location.
	Any

	float
	mGlobalVolume
	The volume of the listener's hearing. This effects all sounds.
	Non-negative values. Greater than one may be clipped.

Note: All methods are trivial.

cSoundMgr

	Data Variable Members

	Variable Type
	Variable Names
	Description
	Supported Values

	ALCdevice*
	mDevice
	The device we use to play audio.
	NULL = No device.

Other = The device.

	ALCcontext*
	mContext
	The audio context.
	NULL = No context.

Other = The context.

	list<SoundDataEntry>
	mDatas
	The datas we manage.
	Any

	list<SoundSourceEntry>
	mSources
	The sources we manage.
	Any

	unsigned int
	mCurSourceID
	The current ID to give to a new source.
	Any

	unsigned int
	mCurDataID
	The current ID to give to a new data.
	Any

Note: Only non-trivial methods are listed.

	AddSoundData

	Return Value
	Description
	Argument List

	unsigned int
	Add a new sound data to be managed, return its ID.
	void

	GetSoundData

	Return Value
	Description
	Argument List

	cSoundData&
	Get a sound data we manage.
	int id – The ID of the sound data to get.

	LoadDataFromFile

	Return Value
	Description
	Argument List

	void
	Tell a data to usea file.
	string filename – The filename to use.

int id – The ID of the sound data.

	UnloadSoundData

	Return Value
	Description
	Argument List

	void
	Unload a data from management.
	int id – The ID of the sound data to unload.

	AddSoundSource

	Return Value
	Description
	Argument List

	unsigned int
	Add a new sound source to be managed, return its ID.
	void

	GetSoundSource

	Return Value
	Description
	Argument List

	cSoundSource&
	Get a sound source we manage.
	int id – The ID of the sound source to get.

	BindDataToSource

	Return Value
	Description
	Argument List

	void
	Have a sound source use a sound data.
	int dataid – The ID of the sound data to use.

int sourceid – The ID of the sound source to bind.

	UnloadSoundSource

	Return Value
	Description
	Argument List

	void
	Unload a source from management.
	int id – The ID of the sound source to unload.

	Listener

	Return Value
	Description
	Argument List

	Clistener&
	Get the listener.
	void

	UpdateSoundStreams

	Return Value
	Description
	Argument List

	void
	Update all sound sources that need more streaming.
	void

Input

Overview

All interactive games require an input system to gather input from the user. Scavenger Hunt's input system will allow input from the keyboard, mouse, and joystick devices commonly found attached to personal computers. We must handle a wide range of events from those devices as they are capable of quite of delivering quite a few actions of the user to the computer to be interpreted. These events include button presses, mouse movement, joystick movement, joystick hat movement, joystick trackball movement, and keyboard key presses. These must all be handled quickly and delivered to the sections of the game that need to know about them in a clean and easy to use way. There must also be a "key bindings" system in place that allows for any of these input events to be "mapped" to a game action. So for example the user could map the joystick's button #2 being pressed to the boost action in the game.

Tasks

Keyboards

Keyboards are simple devices from a programmer's perspective. Our chosen input library, the Simple Directmedia Layer (SDL), allows for easy input from keyboards by making the statement that a keyboard is nothing but a collection of buttons and an input event from one is really just a button's ID along with its state, up or down. This makes supporting them extremely easy.

Mouse Devices

Mouse devices are almost as easy as keyboards to support. SDL allows input from any supported device to be accessed in the same way and mouse data carries with it hardly more complexity than keyboard data. In addition to the buttons on the mouse- left, middle, right, wheel up, and wheel down- the mouse can also be moved left, right, up, and down. SDL provides these in both relative and absolute coordinates for easy determination of the direction, so mouse devices are quite easily supported.

Joystick Axes

The axes of a joystick are usually at least two- front to back and left to right. Newer joysticks often also have other axes such as sliders and those are supported by SDL in the same manner. Since these axes are easily specified and accessed, we are able to support joystick axis motion easily.

Joystick Hats

Joysticks will often have a "hat" on them that is really just like a directional pad on the typical console video game controller. It can be pressed in eight directions and therefore treated as if it were a collection of eight buttons and supported as easily as the keyboard.

Joystick Trackballs

Joysticks apparantly sometimes include a trackball on them which can be used in the same manner as the joystick axes, vertically and horizontally and therefore supported just as easily as those.

Multiple Devices

SDL includes the capability to use any or all of the devices, be they mouse devices, keyboards, or joysticks, connected to the system. While there is only one mouse and keyboard, players may have multiple joysticks. This situation is actually trivially easy to implement as accessing each device is as easy as specifying that device's ID.

A Generalized Event Pool

Events will be generalized to minimize special cases. This will be done by enumerating all possible events, because they are known ahead of time as they are listed above. These events will be able to tell if they match an event from SDL and and determine how "hard" they have been pressed, as a percentage of their range. For example, the joystick can only be moved to the extreme left from the center, if it is moved half way to the left then a value of 0.5 will be the hardness of the press.

Keybindings

The generalized events will be bound to generalized actions. As a matter of proper seperation from the rest of the game, the actions a player can make are not the concern of the input engine. Therefore it will treat them all the same and allow for generalized events to be mapped to generalized actions. In the end, the player may make "normal" mappings, like the joystick button #2 being mapped to "boost," or "odd" mappings, like the joystick trackball moving right being mapped to the search action. As said before, this is allowed because the input engine does not "care" what the mappings are like and it also minimizes special cases where the input engine is knowledgable about game actions and therefore forced to make decisions based on that knowledge.

Event Handling

When an event is recieved from SDL, the input engine will check the complete list of all possible events to see which one, or ones, it matches, and emit a signal, or signals, for each matching event. It will then check to see if the matched event, or events, are bound to any game action and emit the signal for that game action to tell the rest of the game that the action has occurred and how "hard" that action was pressed. Presumably, the appropriate sections of the game will have hooked up to these signals and handle the event in the proper manner. For more information on signals, please consult the User Interface section.

cInputMgr

	Data Variable Members

	Variable Type
	Variable Names
	Description
	Supported Values

	std::map<cInputEvent, DDSignal*>
	mKeybindings
	A map of generalized events to action signals.
	Any

	std::list<SDL_Joystick*>
	mJoysticks
	List of the joysticks on the system
	Any

	GUI::DDSignal<float>
	mVorbisInfo
	Information about the vorbis stream.
	NULL = No vorbis information.

Other = Vorbis information.

	GUI::DDSignal<float>
	moveForward
	Signal emitted when the player moves forward.
	Any

	GUI::DDSignal<float>
	moveLeft
	Signal emitted when the player moves left.
	Any

	GUI::DDSignal<float>
	moveRight
	Signal emitted when a player moves right.
	Any

	GUI::DDSignal<float>
	moveBackward
	Signal emitted when the player moves backward.
	Any

	GUI::DDSignal<float>
	search
	Signal emitted when the player searches a station.
	Any

	GUI::DDSignal<float>
	gag
	Singal emitted when the player uses a gag.
	Any

	GUI::DDSignal<float>
	accept
	Signal emitted when the player accepts a prompt.
	Any

	GUI::DDSignal<float>
	decline
	Signal emitted when a player declines a prompt.
	Any

	GUI::DDSignal<float>
	boost
	Singal emitted when the player uses a boost.
	Any

	GUI::DDSignal<float>
	rotateRight
	Signal emitted when the player rotates the camera right.
	Any

	GUI::DDSignal<float>
	rotateLeft
	Signal emitted when a player rotates the camera left.
	Any

	GUI::DDSignal<cInputEvent>
	rawInput
	Emitted whenever there is an input event.
	Any

Note: Only non-trivial methods are listed.

	CreateAllPossibleEvents [protected]

	Return Value
	Description
	Argument List

	void
	Creates the map of all possible events.
	void

	OpenAllJoysticks [protected]

	Return Value
	Description
	Argument List

	void
	Opens all joysticks on the system to be used.
	void

	CloseAllJoysticks [protected]

	Return Value
	Description
	Argument List

	void
	Closes all joysticks on the system.
	void

	CheckInput

	Return Value
	Description
	Argument List

	void
	Checks for new input and emits the appropriate signals based on it. Should be called periodically, ie. from the main loop
	void

	Bindkey

	Return Value
	Description
	Argument List

	void
	Bind an event to a signal.
	cInputEvent& - the input to bind.

DDSignal<float>& - the signal to bind to

	Bindkey

	Return Value
	Description
	Argument List

	void
	Bind an event to a signal.
	SDL_event& - the event to bind

DDSignal<float>& - the signal to bind to

cInputEvent and derivatives

All of these classes are identical and derive from the cInputEvent. They will each hold the data necessary to distinguish themselves from another of their type, so as to define different input from the same type of device, and override the base class' two methods- to see if they match a given SDL event and to return how "hard" the event was pressed. This is a list of the cInputEvent derivative classes:

cMouseMotionEvent

cKeyButtonEvent

cMouseButtonEvent

cJoyHatEvent

cJoyBallEvent

cJoyAxisEvent

cJoyButtonEvent

cQuitEvent

Networking

Overview

Scavenger Hunt will utilize the client-server model for its networking. The clients will be responsible for informing the server of particular events, and the server will respond accordingly to the messages.

Each client processes certain events by sending a message to the server, who then decides whether or not to forward this information to all other clients by sending a message to each one in turn. At no time will a client send a message to another client. Clients do not necessarily act upon the information they receive about other client’s actions.

Packets

Below is a list of the messages used within the network module, with the data fields specified for each message. The size of each field varies, as the data is formatted into a sequence of binary data bytes before it is sent. Note that the header field is unspecified. In the cases where a network packet has a field that contains another packet, the contained packet will have no header.

Each message sent by the client or server will be in the form of a packet (a short fixed-length section of data that is transmitted as a unit in an electronic communications network). At the beginning of a packet will be a header (except as stated above), which signifies the type of message that was sent. The header will be one byte in length. Below is a specific breakdown of the messages that will be used in the networking module and its format.

Messages that are imperative to the game play and cannot afford to be lost over the network will be sent via TCP messaging. These TCP messages therefore will be considered “guaranteed” messages.

	Format:

	Category name:

1) Packet name:

A) Data field

i) Field detail

a) Detail breakdown

	Before game:

	1) Join request: (Guaranteed)

A) Player information

i) Player name length
(in bytes)

ii) Player name

iii) Player rank

B) UDP port for receiving non-guaranteed messages

2) Join accept: (Guaranteed)

A) Slot index assigned

B) UDP port for sending non-guaranteed messages to the server

3) Join deny: (Guaranteed)

A) Reason

4) New player: (Guaranteed)

A) Player information (as above)

B) Slot index

5) Option update: (Guaranteed)

A) Scavenger item total

	During Game:

	1) Game won: (Guaranteed)

A) Slot index

2) Game quit: (Guaranteed)

A) Slot index

3) Trick activated: (Guaranteed)

A) Slot index

B) Trick id

4) Treat activated: (Guaranteed)

A) Slot index

B) Treat id

6) Gag success

A) Slot index

B) Gag id

9) Last item (Guaranteed)

A) Slot index

10) Station Moved

A) New Station id

B) Old Station id

11) Item received

A) Slot index

B) Item id

12) Drop off

A) Slot index

B) Item id

13) Text message (Guaranteed)

A) Slot index of sender

B) Message size

C) Message

??
???????????????????????????????????
???

14) Player Location

A) Slot index

B) Player center position

i) x component

ii) y component

iii) z component

C) Player orientation vector

i) x component

ii) y component

iii) z component

??
???????????????????????????????????
???

15) Player Inventory

A) Items collected

B) Special items

??
???????????????????????????????????
???

16) Search Sequence (Guaranteed)

 A) Input sequence

 ????????????????????????????????????

???????????????????????????????????????
/???????????????????????????????????????

	Lobby:

	1) Text message (Guaranteed)

A) Player id

B) Message size

 C) Message

Events

Following is a list of all game events that require a network action, along with the network packet that is generated as a response to the game event.

	Before Game:

	· Client requests to join a new game

Client to server: join request

· Server acknowledges join request

Server to client: join deny

--or--

Server to client: join accept

 Server to others: new player

	During Game:

	· Server determines that a trick has been activated:

Server to all: Trick activated

· Server determines that a treat has been activated:

Server to client: Treat activated

Server to others: Treat activated

· Server sends periodic player movement update

Server to all: current position of players

· Client presses search key at drop box, and has item(s)

Server to all: Drop off

· Client pressing search button on hotspot

 Server sends search sequence to client

 Client sends user input sequence to server

 Server compares the two sequences

· Server determines successful search sequence

Server to Client: Item received

· After a player receives an item; the station must move

Server to all: Station Moved

· Server determines a player has one item left

Server to all: Last item

· Server determines that the level has been won by a player

Server to all: Game Won

· Client quits the game

Client to server: drop player

Server to others: drop player

· Server quits the game

Server to all: drop player

	Lobby:

	· Client sends text message

Client to server: text message

Server to others: text message

· Server sends text message

Server to all: text message

User Interface

Overview

Every game needs a user interface and Scavenger Hunt is no exception. Scavenger Hunt will have a frontend menu system that easily and clearly guides the player to his or her goal, be it to change options or play a game. Scavenger Hunt will also require an in-game menu system for the Heads Up Display (HUD). These systems will both use the same user interface code facilities.

Layout

Scavenger Hunt will try to maintain a simple user interface that focuses on playing very similar in style to “arcade” style games. Arcade games try to keep the interface simple to use and allow you start up and play a game with a very small learning curve. Also, the player’s display is set up so that all the information that the player might need is immediately available and easy to identify.

The opening menus, HUD display (illustrated below as an example), and other miscellaneous interface objects will be built using a specially designed class of widgets.

[image: image1.png]
The widgets include scroll bars, text boxes, buttons, and other on-screen interface objects useful for this purpose. These objects are created by writing scripts in XML (Extensible Markup Language) that communicate with the game when compiled to create the specified objects. The details for these objects are discussed in the following section.

Tasks

Widgets

The term widget refers to an element of the graphical user interface (GUI) such as a button, a label, or a check box. Scavenger Hunt's GUI will require a class hierarchy of widgets to cover all our needs. Such widgets include, but are not limited to: a pushbutton for simple button pressing, a checkbox as a two-state button, a radio button as a two-state exclusive button, a label as a non-interactive text and/or image, a progress bar to display progress, a line edit for single line text input, a combo box for displaying one of many choices and chosing one, a listbox for displaying several choices and chosing one, and widgets to hold them such as: a canvas for free positioning of widgets, a vertical box for a vertical line of widgets, a horizontal box for a horizontal line of widgets, a grid to align widgets straightly in two dimensions, and finally a dialog to provide for prompting the user and holding up to three push buttons.

Each of these widgets will be its own C++ class and they will be arranged in a hierarchy as appropriate. This will be sufficient to breakdown the task for creating widgets so it can be completed in an organized manner.

User Interface Definition Files

Scavenger Hunt's GUI will have the capability of building a complete menu system from a user interface specification file. That specification file will be in well-formed XML and checked by a Document Type Defintion (DTD) file automatically by our chosen XML parser, Xerces C++. A C++ class will be created with the sole purpose of loading the XML specification file, creating a menu from it, and allowing access to the created widgets. By this, we will greatly speed up the time it takes to prototype the menus, make changes to the menus, and even create interaction in the menus.

Helper Classes

As a matter of design, the GUI widgets will not directly interact with the graphics engine to draw their images and text. Instead, they will interact with two helper classes that provide text and image loading and drawing. These two helper classes abstract these loading and drawing processes and provide uniform access to the graphics engine though an easy to change encapsulation. This will reduce redundant code and help with overall cleanliness and debugging efforts.

Signals and Slots

As with all GUI systems, the widgets must be able to communicate with each other, the menu system, and the game. This interaction is done through the concept of signals and slots. A signal represents an event, such as a button being clicked, and a slot represents a chunk of code that can be called. The user "hooks" the signal to their slot, be it a C function, a C++ method, or a Lua function, and when that event is emitted, all slots hooked to the signal are called. This allows for the widget to maintain its apathy with respect to the outside world that is using it. For example, a push button that is clicked and emits a "clicked" signal is not concerned with the actions that are carried out as a result of it emitting that signal. Therefore it uses a signal to send out its message that it has been clicked and provides for anyone to hook up to that signal.

The Menu System

The widgets themselves are useless without a shell class that controls them. The menu system can draw all widgets appropriately with a single function call, handle all input appropriately if given the input, and generally contains all the widgets within it so as to provide an encapsulation of them all into a reasonable location.

Input

Input to the menu system, and then to the widgets, is abstracted to the menu system itself. The widgets do not ever recieve input from the input engine; the menu system interprets the input that comes from the input engine and passes the input along to the widgets in the format specified by the base widget class, which defines keyboard and mouse "events." They then act on that and change their state appropriately.

Ease of Use

Measures have been taken to make the menu system easy to use for the rest of the game's code. The only requirement it has of others is that it is given input when it pertains to the menus and that the menu system is told to draw itself with each iteration of the main loop.

Three-Dimensional Effects

Scavenger Hunt is a fully three-dimensional game, and this extends to the GUI. While the core of the GUI is inherantly two-dimensional, it can benefit from the graphics engine's capability to manipulate those two-dimensional images in three-dimensions. Behind the scenes, each image is nothing more than a texture applied to a quad, a three-dimensional rectangle, and that quad can easily be moved around in three-dimensional space to create such effects as image "flipping," flying around, and so forth. This behavior is largely left as a design decision as to how we would like to theme the menus and greatly expands our selection as to how to design the menus.

Heads Up Display (HUD)

The game will include a HUD to display various indicators and messages to the player while they are playing the game. These will all be provied by the widgets of the menu system. Such widgets as the progress bar and the label are especially useful in this purpose as they can easily show text and images to the player in a static way that does not depend on camera movement in the world.

Widget Class Hierarchy

[image: image7.png]
Requirements

Every widget in the GUI system makes use of text and images to display itself. This mandates loading at least one font to use for drawing the text but that will not take up much memory at all. What will take up a lot of memory are the needed images for drawing the various widgets. Images that are drawn on the screen must be stored in memory in uncompressed format and therefore take up a lot of memory. Efforts will be made to minimize this memory usage but there is no denying that a fair percentage of the game's total meory usage will be taken up by the GUI's images.

Widget Classes

Note: The following is a list of each widget class accompanied by a conversational description of the class' functionality and members. The full specification for each widget class (of which there are 17) would take around 30 pages if fully written out. For such a verbose and tedious listing, please see the header files or the Doxygen documentation.

DDWidget

DDWidget is the abstract base class of all widgets in Scavenger Hunt's GUI system. It provides much functionality and data storage for its child classes. This includes basic information about the widget such as its location, dimensions, name, parent widget (which is the widget that holds this one), and input state such as mouse-over status. It also defines input events for keyboard and mouse. Of course it provides methods to change all of these variables when appropriate. Finally, it provides internal functionality such as methods to get a widget's absolute location on the screen based on its parents, conversions from pixels to percentages and back, and parent widget management. Widget also has several abstract members that are required for any widget, such as draw() and drawOff() for drawing and turning draw off.

DDButton

DDButton is the base class of all buttons, including the radio button, the checkbox, and the pushbutton. This class is abstract as it only provides the common functionality of each of its children classes. This functionality includes the "clicked" and "double clicked" signals. It also keeps track of button presses to provide for the double clicking functionality.

DDFrame

DDFrame is the abstract base class of the classes that provide for holding widgets within them. It holds the list of widgets that the frame holds and provides methods for manipulating those widgets, such as swapping them, inserting them, and removing them. It also keeps horizontal and vertical alignment variables and provides methods to set and get those alignment variables.

DDMultiChoice

DDMultiChoice is the abstract base class of the classes that provide for the user to chose one of many choices. It contains a list of strings that represent the choices. It has signals to let the user know when a choice or index of the choice has been chosen. Finally, it provides methods for dealing with the choices such as inserting them, removing them, and swapping them in the same manner as the DDFrame class allows access to its contained widgets.

DDCanvas

DDCanvas is derived from DDFrame as it holds widgets. Its purpose is to allow free positioning of its widgets with no alignment available. This is chiefly used by the menu system as a method of arranging widgets freely on a page and is even a synonym for a DDPage, which is non-existent in the C++ code, when specified in the XML specification document. DDCanvas provides only one method besides the required abstract methods, the functionality to move a widget on the page.

DDCheckBox

DDCheckBox is a two-state button in that it can be either checked or unchecked. It contains images for the background and for the check as well as the boolean states it can be in. Most of its unique methods are for dealing with its checked state as well as its unique signals.

DDComboBox

DDComboBox is a multichoice and therefore has several choices the user can chose from. In it's "collapsed" state it shows just the chosen choice. In it's "expanded" state it shows all the choices and allows for one of them to be clicked. Whenever it is clicked it goes to the state it is not in. Most of its methods are for dealing with its state and its choices. Its only unique signals are also emitted when it changes its state.

DDDialog

DDDialog is a frame that holds only one type of widget- push buttons. It can hold only up to three of them and it always positions them along its bottom edge centered on the dialog. DDDialog can be used as to prompt the user for questions, tell the user something important, and so forth. The three buttons should be enough for any purpose, such as "OK," "Cancel," and "Abort." It also has a title text string and a body text string. The title string is drawn at the top of the dialog and the body text string is drawn in the middle. A dialog can be activated or deactivated, which means that it will be shown or not shown and it has methods and signals for those two actions. It also has many methods for dealing with its texts, buttons, and states.

DDGrid

DDGrid aligns widgets in a grid, where they are horizontally and vertically aligned in rows and columns. It allows for different insertion methods and insertion at a specific point. It can have padding between columns and rows. It provides a multitude of methods for manipulating the widgets in the grid such as moving them around, swapping them and so forth. Lastly, DDGrid has no unique signals.

DDHBox

DDHBox is a frame that allows for horizontal alignment of its contained widgets. They will appear in a horizontal line with spacing, as specified, in between them. DDHBox provides the usual overloads of DDFrame's methods such as add() and remove(). It emits no unique signals.

DDLabel

DDLabel is a simple, non-interactive widget that displays one image and/or one string of text. It emits no unique signals.

DDLineEdit

DDLineEdit is a widget for single-line text entry. A user can type into it any string they like and it will be displayed. It allows for scrolling of the line edit to show the currently typed text. It can limit the number of characters allowed and it emits signals when it is activated (the enter button is pressed on it) or its text is changed.

DDListBox

DDListBox is a multi-choice that proives a vertical list of choices with the selected choice shown highlighted. Options for it can be set such as the presence of a scrollbar and the number of choices. There are quite a few methods that allow for changes to its several images, the scrolling buttons, and its choices to show. It emits signals for scrolling up and down.

DDProgressBar

DDProgressBar displays a bar that is a certain percentage "full" of a progress bar image. It can optionally show its percentage as a centered line of text. It provides a signal to indicate when its percentage changes.

DDPushButton

DDPushButton is the typical button that can be clicked. It can optionally also display a text string centered on it.

DDRadioButton

DDRadioButton is like a checkbox and basically includes all of its functionality. However, it also will uncheck itself when another radio button in its parent is checked.

DDVBox

DDVBox is exactly like DDHBox, but it provides for vertical alignment of widgets.

Non-Widget Classes

Note: The following is a list of each non-widget class accompanied by a conversational description of the class' functionality and members. The full specification for each non-widget class (of which there are 15) would take around 30 pages if fully written out. For such a verbose and tedious listing, please see the header files or the Doxygen documentation.

DDColor

DDColor is a simple wrapper of three unsigned character values representing the red, green, and blue values of a color. It provides methods necessary to manipulate those values.

DDPoint

DDPoint is a simple wrapper of two floating point values, which is what is necessary to specify a point in the two-dimensional space the menu system exists in. It proves methods necessary to manipulate those values.

DDText

DDText encapsulates text for the widgets. It contains not only a text string but various properties of the font which it is drawn with. These include the font itself, the color, and the size. The text can also draw itself on the screen and can determine its size on the screen.

DDImage

DDImage encapsulates an image and provies for the functionality of loading and displaying it to the screen. It can tell its size, resize itself, and be drawn based on priority.

DDImageAnimation

DDImageAnimation is a derivative of DDImage that has a list of frames of the animation and provides functionality necessary to manipulate those frames, set the framerate, and draw the correct frame for the current time.

DDSignal

DDSignal is the non-abstract base class of signals in the GUI system. It contains lists of slots that are hooked to it. Its methods include ways to hook slots to it, ways to unhook slots from it, and a method to emit a parameter to all the hooked slots.

DDSignal<float>

DDSignal void is derived from DDSignal and provides identical functionality with the exception that it does not emit a parameter when it is emitted and therefore can only hook to "void" slots.

DDSlot

DDSlot is the abstract base class of all slots, which are objectifications of callable code. It mandates that its children provide a call() that calls the code they objectify.

DDFunctionSlot

DDFunctionSlot is a slot that represents a function that takes a parameter of any type. It holds a pointer to that function and has methods for calling that function, getting a pointer to that function, and setting the function.

DDFunctionSlotVoid

DDFunctionSlotVoid is exactly like DDFunctionSlot but it does not take a parameter.

DDLuaSlot

DDLuaSlot is a slot that represents a Lua function by its name, as a string. It has methods for calling the function, getting the function's name, and setting the function.

DDMethodSlot

DDMethodSlot is a slot that represents a C++ class method. It holds a pointer to the method and provides methods for calling the method, getting a pointer to the method, and setting the method.

DDMethodSlotVoid

DDMethodSlotVoid is exactly like DDMethodSlot except that it does not take a parameter.

DDGUIFile

DDGUIFile is chiefly responsible of dealing with the GUI XML specification file. It can load the file, build a menu system out of it, and provide access to that menu system in the form of access to widgets as well as pages and the default page.

DDMenu

DDMenu is the shell class of the menu system itself. It holds all the game's widgets in a, presumably, gigantic implicit tree as specified by the XML specification file as well as runtime code. It provides methods for getting at the widgets within it, handling input and passing it along to the widgets, loading the menu system from the XML file, and drawing the appropriate page of the menu system.

Artificial Intelligence

Overview

Scavenger Hunt is designed to be a multiplayer game, even if a player has no other human opponents to play against. Since this is the case, it is important to have the computer capable of stepping in and assuming control of the other characters in the game for the human player to play against.

However, due to the number of aspects that make up Scavenger Hunt’s game play, creating challenging but not impossibly difficult computer opponents presents a dilemma. In order for the computer to play in a fashion that resembles the behavior of a human opponent, the computer must be forced to work roughly within the confines and restrictions of how people would experience the game. This means controlling each computer opponent’s access to game information so that the computer cannot know more than an above average human player would in its situation. This also means giving each computer player slightly different playing styles (like a personality), and allowing that the decisions that it has to make throughout the game can be influenced by this personality. Moreover, each computer opponent can be modeled in such a fashion that as events occur in the game, it affects the decisions that the computer makes (like emotions.)

Creating artificial intelligence (or A.I.) opponents for a human player to play presents a series of difficult problems to solve. Decision making, path finding, using items on other players, and making human-like mistakes, such as forgetting where something was after a certain amount of time, are some of the aspects to modeling computer opponents that makes creating fun and challenging AI players a complex problem.

The next few sections feature a breakdown of how these problems will be addressed and solved for Scavenger Hunt.

Initialization

Whenever a level is about to be played in Scavenger Hunt, the AI module must first go through an initialization phase to prepare for the round. During this phase, the AI module must have access to the data for the level about to be played. In this level data, navigational points for the AI players has to be extracted and stored, and also, all of the characters for the current round of play that are set to be controlled by the computer, are going need to be created, and their difficulty and general behavior is going to have to be set to some default values.

Creating an AI player

For each computer opponent that has to exist during a round of play, a construct must be created to represent that opponent and provide the computer with the data necessary to perform actions appropriate to that opponent’s personality.

An AI player is represented by a series of components, which are named to suit their purpose. Each AI player has Personality, Memory, Logic, Sensory Input, Reflex/Action Output, and a Plan.

To create a new AI player at the start of the game, the Personality of the AI player has to be initialized with a set of values given to define its behavior and difficulty. The AI module must be passed a special structure that contains data fields that must be filled with the desired values for the new AI player’s Personality.

	AI Personality Initialization Data

	Data Field
	Description
	Possible Values

	Speed Confidence
	One value to indicate how much of the character’s speed abilities that the AI player will take advantage of. This will determine how often a computer player decides to use its speed boost.

	0 = Random

 1 = Very low

2 = Low

3 = Average

4 = High

5 = Very High

	Opinion Of Others
	An array of values. One for each player. This will be the default attitude of the AI player to each of the other players in the game (human or otherwise.)

	0 = Random

 1 = Very low

2 = Low

3 = Average

4 = High

5 = Very High

	Search Preference
	One value to indicate how the AI player will choose the items it wants to remember first. An AI player has only so much room in its memory to store what items it needs to find.

	0 = Random

1 = Pick all of the same color first

2 = Pick different colors whenever possible

3 = Follow the order of the list exactly

	Temper
	One value for the AI player’s general mood. An AI player with a higher temper is much more likely to pick up and use gags.

	0 = Random

 1 = Very low

2 = Low

3 = Average

4 = High

5 = Very High

	Fear Of Others
	One value for the AI player’s fear of interacting with other people in any way. A high value for this attribute will make it very unlikely that the AI player will go for trick-or-treats and less likely to use a gag on another player.

	0 = Random

 1 = Very low

2 = Low

3 = Average

4 = High

5 = Very High

	Aggression
	One value for the AI player’s aggression. A high level of aggression influences an AI player to want to use its gags a little more often. High aggression levels also increase the speed at which an AI player can enter a search sequence and retrieve an item.
	0 = Random

 1 = Very low

2 = Low

3 = Average

4 = High

5 = Very High

	Anxiety
	One value for the AI player’s ability to concentrate and to not make mistakes like over-boost or incorrectly enter a search sequence.

	0 = Random

 1 = Very low

2 = Low

3 = Average

4 = High

5 = Very High

	Insecurity
	One value indicating the frequency at which the AI player will want to make return trips to the drop box. High levels of insecurity may result in AI players going out of their way to empty their inventory when they’re only carrying a couple of items.

	0 = Random

 1 = Very low

2 = Low

3 = Average

4 = High

5 = Very High

	Memory Size
	How many items that the AI player will have room to “remember” from its scavenger list before it has to run back to check its scavenger list again.

	0 to <size of scavenger list>

	Memory Quality
	How long an AI player can remember the items it has memorized before they are “forgotten” and removed from its memory. (This is explained later.)

	0 = Random

1 = Very low

2 = Low

3 = Average

4 = High

5 = Very High

	View Range
	How far an AI player’s view extends to the world around it. Bare in mind that the computer’s sight is not obstructed by solid items, and set a value that seems fair.
	1 to <distance in meters>

A value of zero has no meaning for this field.

These values must be passed in for each AI player and can be altered to change the game difficulty. Once the AI player is created, an ID for that AI player is returned to be associated with its player slot number in the main game.

Bear in mind that these values are separate from the abilities of the character they are playing as. Each character in the game that a player can choose to play as has different strengths and weaknesses. The AI will not adjust its play according to these. So, when creating an AI player to control a certain character, think about the character’s attributes when filling out the data fields above.

AI Player Structure

As mentioned earlier, each AI player consists of a series of components, each of which serves certain purposes. Each component is listed below along with a description of its functionality.

Personality

The personality area of the AI character’s “brain” will contain various characteristics that will be used by the logic in making decisions. These personality traits can be initialized when the character is created, and modified later if desired.

Perception and Emotions are two categories within an AI player’s Personality that have influence on the actions that an AI player decides to take. Also, since these can change during the game, two sets of these values are stored. The first set is left untouched and is used as anchor values to help steady the changes in the second set, which are used as the actual current “feelings” of the AI player.

	Attribute
	Meaning
	Values

	PERCEPTIONS

	Speed
	How confident a character is of his/her speed. Letting a character have different concepts of how fast they think they are may provide interesting behaviors. Characters who don’t think of themselves as fast may spend more time path finding a better route.

	VERY LOW, LOW, AVERAGE, HIGH, VERY HIGH

	Opinion Of Others
	Each character will have an opinion of every other character in the game. They’re opinion for each character will be used in junction with their dominating feelings to alter what actions they decide to take. A character’s opinion of every other player can have a default value, however, these values are altered throughout play depending upon what
	VERY LOW, LOW, AVERAGE, HIGH, VERY HIGH

	Search Preference
	A character’s searching preference determines in what order they’ll “memorize” items. Each character has an ability to remember only a few items at a time, so, when viewing their scavenger list, the character must decide what items it will go after first. “Same Color First” means the computer will go for all of one color first. “Different colors when possible,” means the computer will try to remember one of each color before memorizing a second item for any color. “Follow list order” means the computer will just hunt the items in whatever order they appear in its inventory list.
	SAME COLOR FIRST, DIFFERENT COLORS WHEN POSSIBLE, FOLLOW LIST ORDER

	EMOTIONS

	Temper
	An angry character is much more likely to go for gags and use them on players. Really angry characters will waste time chasing other players around. A character’s temper can often be directed at a target, so they’re opinion of the other characters is looked at with temper.
	VERY LOW, LOW, AVERAGE, HIGH, VERY HIGH

	Fear Of Others
	If fear of others is dominant, the character will avoid contact with people whenever possible. Fear Of Others also affects how often a computer player may decide to approach a door for a “trick or treat.”
	VERY LOW, LOW, AVERAGE, HIGH, VERY HIGH

	Aggression
	This characteristic can complement temper in deciding when to use gags. Low aggression can help counter-balance a bad temper so that they only chase other characters when really angry. High aggression can result in characters going overboard on their boost so that they tire themselves out without realizing it. However, high aggression generally allows them to go through the item searching combination at incredibly fast speed.
	VERY LOW, LOW, AVERAGE, HIGH, VERY HIGH

	Anxiety
	A character with high anxiety is more likely to make mistakes while searching for objects, and will also have a greater risk of “forgetting” objects in their memory.
	VERY LOW, LOW, AVERAGE, HIGH, VERY HIGH

	Insecurity
	An insecure character in Scavenger Hunt is one that refuses to carry many items at once because he/she is afraid of losing them. High insecurity results in frequent trips to the drop box no matter what the distance.
	VERY LOW, LOW, AVERAGE, HIGH, VERY HIGH

Besides Perceptions and Emotions, an AI player has a series of possible actions that it can take at any point in the game. For each of these actions, a rating of desirability corresponds to how appealing that action is at any given time. These Desires can be directly affected by events from within the game and by changes to the AI player’s Perceptions and Emotions.

Listed below is the Desires section of an AI player’s personality, the components that make it up, and what they mean.

	DESIRES

	DESIRE TYPE
	DESCRIPTION
	SCORE
	PRE-REQUISITES
	“CAN-DO!” FLAG

	Get Red

 Maroon

 Orange

 Yellow

 Green

 Blue

 Purple

 White
 Item
	The desire to find a hot spot of a certain color. This should be the dominant desire of most every character.
	All Desire scores go from zero to ten. All Desire scores are influenced by Personality and game state information such as the player’s proximity to certain objects.
	Location of <color> hot spot in memory.
	This flag indicates whether the current desire can be satisfied yet. A value of FALSE indicates that the player is missing information needed to form a plan to satisfy that desire. When this is the case, the player needs to Search around until an injected Stimulus provides information that satisfies the requirement to form a plan, or a new desire takes precedence.

	Get Trick-or-

 Treat
	The desire to take a shot at getting a Trick-or-Treat at a door marked with a Trick-or-Treat hot spot.
	
	Location of a gag hot spot in memory.
	

	Hunt Player 1,

 Player 2,

 Player 3,

 Player 4,

 Player 5,

 Player 6,

 Player 7,

 Player 8
	This desire should only occur once a gag has been grabbed. If an AI player has a gag, their desire to hunt a player is proportional in value to the distance of the player from them and their attitude towards that player.
	
	Location of player in memory.
	

	Go Use Drop

 Box
	The desire to run back to the drop box depends on how much an AI character is carrying and is amplified by their Anxiety level.
	
	None.
	

Here is a sample AI Personality “snapshot” when in game:

	Items in memory
	Red Sledge Hammer

Red Watering Can

Red Paint Brush

Orange Horseshoe

Orange Bowling Pin
	Items found & being carried
	Red Sledge Hammer

	Gag possessed
	Whipper-Snapper
	Seen Hot Spots
	Blue, Purple

	Player Standings
	3,1,2,8,4,5,7,6
	Players in view
	Players 5 & 6

	Inventory Max
	6 Items
	
	

(Yellow-ed boxes indicate data that the AI player has about itself. Should always be neutral.)

	Speed
	Average
	Opinion Of Player 1
	Average

	Search Preference
	Follow List Order
	Opinion Of Player 2
	Low

	Temper
	Average
	Opinion Of Player 3
	Average

	Fear Of Others
	Low
	Opinion Of Player 4
	High

	Aggression
	High
	Opinion Of Player 5
	Average

	Anxiety
	Average
	Opinion Of Player 6
	Very High

	Insecurity
	Average
	Opinion Of Player 7
	Average

	
	
	Opinion Of Player 8
	Low

	Get Red Item
	6
	FALSE

	Get Maroon Item
	3
	FALSE

	Get Orange Item
	3
	FALSE

	Get Yellow Item
	0
	FALSE

	Get Green Item
	0
	FALSE

	Get Blue Item
	0
	TRUE

	Get Purple Item
	0
	TRUE

	Get gag
	3
	FALSE

	Get Trick-or-Treat
	4
	FALSE

	Hunt Player 1
	4
	TRUE

	Hunt Player 2
	5
	TRUE

	Hunt Player 3
	0
	FALSE

	Hunt Player 4
	1
	TRUE

	Hunt Player 5
	1
	TRUE

	Hunt Player 6
	0
	TRUE

	Hunt Player 7
	1
	TRUE

	Hunt Player 8
	2
	TRUE

	Use Drop Box
	1
	TRUE

As you can hopefully see from this sample read out of an AI player’s Personality section, the AI player will start the game by memorizing the items in its Scavenger List in order. In this case, it memorized three red items and two orange items. Thusly, the Desire score for finding a red item is highest. However, since it does not know where a red hot spot can be found in the level yet, the score is barely the highest. If a red hot spot is found, this Desire score will go up, of course. However, if player 2 were to come close by and pull a gag on the AI player, the AI player’s desire to get a gag and chase player 2 would score higher than finding a red item. By keeping these score values close and their range small, it should allow for the AI players to be able to adapt their behavior to recent events.

Sensory

Each computer opponent can learn things about the world by “seeing” what is happening around it. It also has a constant view of the game standings and is aware of when it is losing and winning. Computer opponents also know when a player has gagged them and which player may have activated a trick.

The computer opponents will be allowed to “see” anything that happens within a certain circle of influence (and, yes, that means through walls also.) How far a computer can see can be set when a computer-controlled character is created.

If another character takes an item from a hot spot and the hot spot disappears while within the computer opponent’s sensory circle, then the computer can make the adjustment to its memory. Otherwise, if the game sends a message that another player claimed a hot spot item, all of the AI players who were not within “view” of this event will not update in their memory that this hot spot no longer exists at that location.

When another player enters an AI player’s “view”, his/her location is constantly updated in the AI player’s memory until the other player slips out of view again. After that, the other player’s location is not updated in the AI player’s memory any more, so the AI player will only have the last position it saw the other player in its memory until it happens to run across that player again.

Sensory only pertains to hot spots and the location of players. Stationary objects in the level, like the drop box, are always known and thus are ignored by the sensory area. To assist in path finding and navigation, it is assumed that the AI players can see all of the level objects and these objects are automatically considered by the navigation logic. The Sensory area of the AI player construct exists to assist the Memory area in functioning in a similar manner to a human player.

Logic

The logic area of the AI player structure is responsible for processing information it receives from the game and telling the Memory and Personality area to make adjustments based on the data received. It also has to adjust the AI player’s current “Plan” by using the Desires from the Personality area to make decisions on which plan that the AI player wants to carry out.

The logic area knows which actions must be performed to fulfill a plan. It works with the Reflex area of the AI player structure to feed input to the game itself to perform the actions needed for the plan. The logic area is responsible for executing the path finding algorithms, telling the Memory which items to “remember”, and parsing the scavenger list for items to “memorize.”

Knowledge Base

Each AI player has access to a global “knowledge base,” which keeps track of the player standings. There is only one copy of this knowledge base, and all of the AI players have access to it. This is where all of the information about the game is stored.

The Logic area uses the Knowledge Base to help it perform actions such as path finding. The Sensory area uses the Knowledge Base to help it decide what is within an AI player’s view.

To assist the Logic in making decisions, the Knowledge Base will have access to the game’s player ranking during play, which indicates which players are winning.

	Rank
	Player
	Items Collected

	1
	Name 1
	List of items collected in Drop Box.

	2
	Name 2
	List of items collected in Drop Box.

	3
	Name 3
	List of items collected in Drop Box.

	4
	Name 4
	List of items collected in Drop Box.

	5
	Name 5
	List of items collected in Drop Box.

	6
	Name 6
	List of items collected in Drop Box.

	7
	Name 7
	List of items collected in Drop Box.

	8
	Name 8
	List of items collected in Drop Box.

Also, in the Knowledge Base should be a reference to the game data for each player, level data, and other miscellaneous game state data. This information includes:

Data about players:
· Player inventory (Items collected so far.)

· Gag slot data (Which gag each player has, if any.)

· Location of each player in world.

Data about levels:
· Size of map.

· Bounding areas for each level segment (sub-division.)

· Location of drop box.

· Location of active hot spots.

· Location of active trick-or-treat spots.

· Location of in-game scene objects. (Houses, shrubs, etc.)

Data about game state:

· Has anyone won yet?

· If an item from a hot spot is taken, what was the location of the spot that has now disappeared? (Needed so that each AI player can determine whether they’ve “seen” it disappear.)

· If a trick-or-treat was activated, what was the location of the spot where the trick-or-treat was? (Need this so that each AI player can determine whether they’ve “seen” it disappear.)

· If a trick was activated, which player activated it and which trick was it?

· If a melee gag was used and hit another player, which gag was it? Which player threw it? And, which player was hit?

· If whoopee cushion is activated, which player activated it? Which player originally planted it?

Memory

Each computer opponent has the ability to remember only a certain number of items out of their scavenger list. Each item in the list can vanish from their memory it time enough time elapses. The rate at which items are forgotten can be set when the AI player is created, and this rate can increase if the character is stressed.

When the Decay value for a memorized item reaches zero, Memory must remove the item from the Memorized List, thus simulating that the AI player has forgotten what the item was.

	Memorized List

	Item Needed
	Cat. Color
	Decay Till Forget
	Found
	Distance

	Name of item needed.
	The color of the item’s category type.
	Amount of time till item is “forgotten” about.
	Set as “false” until the item is retrieved.
	To nearest known hot spot of that color.

Also, each computer opponent can remember the last place on the map it saw at least one of the hot spots of each color including a gag spot. The Sensory area updates this information. Memory simply holds onto this data.

	Object Tracker

	Object
	Location
	Number
	First Time Seen Flag

	Red hot spot
	(x,y)
	# that can be stored
	True only when first added to list.

	Orange hot spot
	(x,y)
	# that can be stored
	True only when first added to list.

	Yellow hot spot
	(x,y)
	# that can be stored
	True only when first added to list.

	Green hot spot
	(x,y)
	# that can be stored
	True only when first added to list.

	Blue hot spot
	(x,y)
	# that can be stored
	True only when first added to list.

	Purple hot spot
	(x,y)
	# that can be stored
	True only when first added to list.

	White hot spot
	(x,y)
	# that can be stored
	True only when first added to list.

	Trick Or Treat
	(x,y)
	# that can be stored
	True only when first added to list.

Each computer player also tracks the position of each other player that is in view, and is aware of how far that player is from it. The Sensory areas update this information, and changes in this information can affect how an AI player feels about any plan that involves trying to use a Gag on a player.

	Player Tracking

	Player ID
	Distance
	In View Flag

	The ID for the player in view
	The distance computer player is from this player.
	True only when the position data for this player is being updated

Also, when the Logic area is path finding, the routes that it generates are stored in Memory. Only one route can be stored at a time, so when an AI player changes its priorities or wants to map out another route for some reason, then the existing route is overwritten.

	Navigation Route

	Route Type
	Node List
	Number of Nodes
	Still building?

	Indicates whether the route is a global highway or a local route. (Explained later)
	List of node positions stored so far.
	Amount of nodes left to process in the route.
	If this is true, route cannot be run yet. Logic is still building route.

Plan

This part of the AI player construct holds the current plan and relevant information to it as decided by the Logic area.

	Plan

	Plan ID
	Duration
	Number of Steps
	Current Step
	Plan Completion Flag

	A reference value to the highest ranked Desire in the Personality area.
	How long to pursue this plan before it’s time to try another one. This is here to catch any problems that may arise if the path finding gets stuck.
	Number of actions that need to be performed to satisfy this Plan.
	The current step number of the plan that the Logic must carry out before moving on to the next.
	A completed Plan is flagged so that the Logic knows that it’s time to make adjustments to the Memory and re-evaluate all of the Desires.

There is a Plan for fulfilling each of the Desires of an AI player. These plans take a number of steps, and depending on which step of the process an AI player is, the Logic area performs different actions and may or may not need to send output to the game through the Reflex area to accomplish these goals.

Reflex and Action Output

The Reflex area is responsible for holding the control commands that will be given to the game whenever the game queries this AI player for input. Set up in this fashion, the game can treat AI players like human players. Thusly, the AI players will interact with the game the same way a human player would.

Game Message Handling

The game will be generating Event Messages based upon what is happening in the game. Of these messages, the AI module is interested in a few since it needs these to determine when an AI player needs to be aware of when something important has occurred.

When game-generated Event Messages are processed, each AI player must evaluate whether the event effects them or not and what adjustments to make to its Personality.

If the event does affect them, adjustments are made according to the following table:

	Personality Value Adjustments

	I picked up an item.
	Attitude towards others:

 -1 to any which are above the default value.

Temper:

-1 if above the default value.

Anxiety:

-1 if above the default value.

	A gag got pulled on me
	Opinion of offending player:

-1 for Whipper-Snapper or Cream Pie

-2 for Bag of coal or Whoopee Cushion

-3 for Snake can.

Temper:

+1 for Snapper-Snapper or Cream Pie

+2 for Bag O’ Coal, Whoopee Cushion, or Snake Can.

Aggression:

+1 for Bag O’ Coal, Whoopee Cushion, or Snake Can.

Anxiety:

+1 for Bag O’ Coal

Insecurity:

+1 for Snake Can.

	I pulled a gag on a player.
	Opinion of affected player:

+1 for Whipper-Snapper, or Cream Pie.

+2 for Bag O’ Coal, Whoopee Cushion, or Snake Can.

Temper:

-1

Aggression:

-1

	I received a treat.
	In all cases: Temper -1

Cookie: Speed Confidence +2

 Aggression +1

 Insecurity -1

Lemon Drop: Fear Of Others -2

 Aggression +1

S’mores: Known locations for items in memory get filled.

 Those already known get their decay timer reset.

 Aggression +1

 Speed Confidence +1

Peppermints: Speed Confidence +2

 Fear Of Others – 1

Jelly Beans: Fear Of Others –1

 Aggression +1

 Anxiety –1

 Insecurity -1

	A trick got activated.
	Opinion of player who set off the trick:

-1

Opinion of other players:

+1 if lower than the default value.

	I activated a trick.
	Opinion of all players:

+1 if lower than the default value.

Temper:

-1 if above the default value.

Evaluating Desire Rating and Changing Plans

Every time a Personality rating is altered or certain actions occur in the game, then that AI player must re-evaluate any goals that are affected, and if any of the affected Desires receive a higher priority score than the current Desire. If this happens, the current Plan is destroyed, and a new Plan is formed based on the set of actions required to satisfy the new Desire.

For all adjustments listed, the score for each Desire cannot exceed 10 nor drop below 0. Also, the added constant (µi) is generally set to zero and only exists so that the Logic can decide to selectively affect the odds of a Desire being strong at certain times. This is useful for wanting to, for example, stop chasing a player after a certain amount of time. Without this scalar constant to affect the Desire value, reevaluation of the Desire values would only result in the Logic being forced to decide to chase that same player again. Setting the µ value for that Desire to a negative value will effectively prevent that Desire from being dominant for a while. After a certain duration, µ can be reset to zero again.

	Calculating Desires

	Get <color> item.
	Start with:

If item is in my memorized list: 6

If not in my memorized list: 0

Then add:

If I know where a <color> item can be found:

 If <known color> is within 40m: +2

 If <known color> is within 20m: +3

+µ0 - µ5 (one for each color item)

	Get gag.
	Start with: 5

Then add:

 + (Temper Eval)

-1

VERY_LOW

0

LOW

0

AVERAGE

1

HIGH

2

VERY_HIGH

 + (Opinion Eval)

-1

Severest Opinion Of Others < Average

0

Severest Opinion Of Others = Average

0

Severest Opinion Of Others = High

1

One Severe Opinion = Very High

2

More than One Opinion = Very High

+1 if I know where a gag hot spot is.

+2 if the gag hot spot is within 20m.

+µ6

	Get Trick-Or-Treat
	Start with : 3

Then add:

+ (Fear of Others Eval)

2

VERY_LOW

1

LOW

0

AVERAGE

-1

HIGH

-2

VERY_HIGH

+3 if the Trick-or-Treat station is within 20m.

+µ7

	Use Drop Box
	Start with: 0

Then add:

+(Inventory burden adjustment)

0

No items

1

Light Burden

3

Moderate Burden

6

Heavy Burden

10

Full Inventory

+(Insecurity adjustment)

+(Items still memorized adjustment)

0

VERY_LOW

1

LOW

2

AVERAGE

3

HIGH

4

VERY_HIGH

0

More than one item still in Memory

2

Only one left

10

None left

+(Location of Drop Box adjustment)

2

Within 40m

4

Within 20m

+µ8

	Hunt <Player ID>
	Start with:

 (Base starts with temper.)

0

VERY_LOW

1

LOW

2

AVERAGE

3

HIGH

4

VERY_HIGH

Then add:

 +(Opinion Eval for <player ID>)

+1

VERY_LOW

0

LOW

0

AVERAGE

-1

HIGH

-1

VERY_HIGH

 +(Aggression Eval)

-1

VERY_LOW

-1

LOW

0

AVERAGE

+1

HIGH

+1

VERY_HIGH

 +(Fear Of Others Eval)

+1

VERY_LOW

+1

LOW

0

AVERAGE

-1

HIGH

-2

VERY_HIGH

 +1 if player is within sight.

 +3 if currently in possession of melee gag.

 +µ9 - µ16

Taking Steps To Complete Plans

When an AI player has a plan to follow, it must perform a number of steps to fulfill that plan. The Logic area of an AI player’s structure handles following these steps and relies on feedback from the game coupled with the AI Knowledge Base to determine when one step is completed and when to move on to the next step.

	Get a <color> Item
	Get a Trick-or-Treat

	1. Check memory for any last known locations for a hot spot of color: <color>. If there is one, go to instruction 2. If not, go to instruction 7.
	1. Check memory for any last known locations of a trick-or-treat station. If there is one, go to instruction 2. If not, go to instruction 7.

	2. Plot a global path to hot spot location if necessary.
	2. Plot a global path to trick-or-treat location if necessary.

	3. Follow global path. If there’s no path, or path has been followed, go to instruction 4.
	3. Follow global path. If there’s no path, or path has been followed, go to instruction 4.

	4. Plot a local path to hot spot location if necessary.
	4. Plot a local path to trick-or-treat location, if necessary.

	5. Follow local path. If there’s no path, or path has been followed, go to instruction 6.
	5. Follow local path. If there’s no path, or path has been followed, go to instruction 6.

	6. Interface with the hot spot until item is received. Wait for game message that item was retrieved. Once message is received, regardless if someone else got it or not, destroy this Idea.
	6. Interface with the trick-or-treat spot until door is opened. Wait for game message that trick was activated or treat was retrieved. Once message is received, regardless if someone else got it or not, destroy this Idea.

	7. Not ready to path-find towards a hot spot yet. Need to find one first. Search Around until a hot spot of color <color> is found, then go to instruction 2.
	7. Not ready to path-find towards a trick-or-treat spot yet. Need to find one first. Search Around until a trick-or-treat spot is found.

	Use a gag on <player ID>
	Go use Drop Box

	1. Check memory to see where this person is. If he/she is in my sights, go to instruction 2. If not, go to instruction 7.
	1. Plot a global path to the Drop Box, if necessary.

	2. Plot a global path to player’s position, if necessary.
	2. Follow global path. If there’s no path, or path has been followed, go to instruction 3.

	3. Follow global path. If there’s no path, or path has been followed, go to instruction 4.
	3. Plot a local path to Drop Box location if necessary.

	4. Plot a local path to the player, if necessary.
	4. Follow local path. If there’s no path, or path has been followed, go to instruction 5.

	5. Follow the local path. If there’s no path, or the player is within my gag range, go to instruction 6.
	5. Interface with the Drop Box. Empty memorized items in memorized item list. Destroy this Idea.

	6. Use the gag. Regardless on success or failure, destroy this Idea.
	

	7. Not ready to path-find towards that player yet. Need to find him/her first. Search around until the player is found, then go to instruction 2.
	

Plan Prerequisites

In order to start trying to start following a Plan to satisfy a desire, the AI player must make sure that this is possible first. As mentioned earlier in the coverage of Desires in the Personality section, most of the Desires have a pre-requisite before the steps for the Plan can be followed.

The only Plan that never has a pre-requisite is a plan to head back to the Drop Box, since the AI players are always aware of where the Drop Box is.

The other Plans, however, each require knowledge about the location of either a hot spot or a player. When a Plan with a pre-requisite such as this is needed to satisfy the Desire with the highest rating, and the pre-requisite has not been satisfied yet (i.e. the location of the correct player or correct colored hot spot is not known), then the AI player has to put itself into Search mode. Search mode is discussed later, because to understand how an AI player will search, it is important to first understand how the AI player will find its way around the level.

Path-finding

Assume for a moment that the AI player wants to satisfy a Desire to find a red item that is at the top of its scavenger list. Assume, also, that the AI player is aware that a hot spot for a red item lies only fifteen meters away. The AI player’s Logic immediately sets that satisfaction of that Desire as its Plan, and starts following the steps needed to achieve this goal.

The first step to claiming a red item is to check its Memory for a known location of a red hot spot. It finds reference to such a location, so Logic moves to step two which states that it now needs to plot a “Global Path.” Thus begins the process of the AI player trying to find its way around a level. A Global Path is one of two types of paths that can be generated to help the AI player navigate a level. Generating these two types of paths involves a process called Path-finding.

Global Paths

Scavenger Hunt’s levels are rather large and populated with quite a few objects and obstacles. To navigate around, the AI players will need a system to help it plot efficient routes.

To assist in efficient navigation of these rather large levels, AI players can traverse long distances by creating a Global Path. A Global Path is made by connecting a series of waypoints (positions marked around the map, like breadcrumbs, to help the AI players navigate) from the waypoint closest to the AI player to the waypoint closest to the object they are trying to reach.

Waypoints are created when the level is created in the level editor. When a level is loaded in the game, the AI module is supplied with a list of the waypoints stored for that level. During initialization, the AI module takes these stored waypoints and connects all of the points where a straight line from one to the other is possible without colliding with an object or obstacle in the level. If the line comes too close to an object such that a distance equal to the width of a player character cannot ensure unobstructed passage, then the line is rejected as well.

The end result is a network of paths around the level such that all of the waypoints are connected by straight lines, and each waypoint has a unique identifier associated with them such that any combination of them used to create a path around the level can be used to unique identify that route and direction through the level.

On the next page is a rough illustration of the concept:

[image: image8.png][image: image9.png]
[image: image10.png]
[image: image11.png][image: image12.png][image: image13.png][image: image14.png][image: image15.png]
[image: image16.png][image: image17.png][image: image18.png][image: image19.png]

For illustrative purposes, assume the dark and light green ovals to be lines of trees and bushes, and the aptly labeled boxes to be houses. A player cannot pass through all of these objects. The objects must be walked around. The gray strips represent streets, and the dark green around the streets represents grass. These areas cannot by easily walked across by a player. The large, numbered black circles represent waypoints stored with the level, and the black lines between them illustrate useable paths between these waypoints as determined by the AI module. The red line is there to illustrate a close call, but a path that is ultimately rejected because it just comes too close to a solid object, and thus, could cause the computer player to get stuck against it.

Once this web of paths has been produced, a distance would be associated with each path. After the distances are recorded, each waypoint must store the shortest connection of points to each other point on the map. Obviously, to conserve space, the number of waypoints used on a map must be as conservative as possible. These will have to be placed by the person creating the level in the level editor, and thus being placed by a human being, it should be possible to ensure an intelligent and frugal placement of points.

So the data for waypoint 5, for example, should look like this:

Storing the waypoints in this fashion, and associating this data with them, will allow for very quick processing for the computer to find its way around a level. All an AI player needs to do is figure out which waypoint it is closest to, and find out which waypoint that the object it is trying to get to is closest to. Then, the AI player can head to the waypoint it is next to and use the value of the waypoint it wants to get to (-1, of course, since arrays start at index 0) as the index into the array of Optimum Paths from the waypoint it is at.

The result is that each waypoint basically has a look-up table of connected points that have been pre-calculated at level creation time to assure the most efficient route through the level using the waypoints as connection points. Without any further processing, an AI player can follow this Global Route to the destination waypoint, which is guaranteed to be fairly close to the object it is trying to get to.

Local Paths

However, once a Global Path has been followed, the AI player has likely not reached its exact destination yet. It is just guaranteed to be closer to it than before following the Global Path route. From this point on, the AI player needs to negotiate its way around the remaining objects and obstacles in its way towards the object it is trying to reach.

To generate a Local Path to the object, the AI players must now feel out a route to the object without being able to use the nodes placed around the level. What the AI player will have to do now is generate its own navigational nodes and connect them itself to form a path.

This process can take quite a few steps, and since Scavenger Hunt can have as many as seven computer controlled players running around a level, it is important to try to use up as little processing as possible on each AI player’s turn. To do this, after certain steps in the process, the AI player will mark its progress in mapping out its path, and then pass game execution time on to the next player. Since the current path that the AI player stores in Memory can be flagged as “still being built,” the Reflex area of the AI player construct can simply respond with no input when the game queries for it. Also, while not issuing input for a few game cycles, the AI player’s character will go into its idle animation from time to time, thus adding to the illusion that a human player has control of the character and has stopped to think.

To map a Local Path, the AI players will utilize a form of a wall-tracing algorithm. The process will work as follows:

[image: image2.png]

Assume the following set up for an AI player. The red spot indicates where the closest waypoint has guided the AI player so far. The black X is where the AI player wants to go. The light green circles are bushes and trees, and the dotted blue lines around them indicate their bounding box for collision checking purposes.

When an AI player reaches the step in its plan to start plotting a Local Path, because no more predetermined waypoints can be used, the AI player’s logic must work through the following procedure:

Step 1: A line is drawn from the AI player to the X.

Step 2: A determination is made as to if the boundary boxes for any of the objects are hit. (Shown above with the white dots.) Once all intercept points are calculated, the closest one is taken and the rest are discarded.

If the path is unobstructed, then the path is stored, the route is marked as finished, and the AI player’s Logic will then move to the next step in the plan, which should be to follow the constructed path. Otherwise, more processing of the route must be done.

Step 3:

The hollow white circle represents the bounding radius of the AI player’s character. (In other words, the circular area defined to describe the player’s area for collision detection purposes.) The AI player will take the point of impact with the first object boundary and follow back on its red direction line a distance of ‘r’, which represents the radius of the AI player’s bounding radius. This point, we’ll call N1. This is used to keep the AI player away from walls when navigating.

Step 4:
The solid white circles are created by drawing a line parallel to the edge of the bounding box hit going through the point N1 from a distance ‘r’ past the point on one end of the edge of the bounding line hit, to a distance of ‘r’ past the point on the other end of the bounding line. The black spots in the white circles indicate the exact range of this line. Let’s name the spot on the higher white circle N2 and the spot on the lower white circle N3.

Step 5:

Calculate the distance to the end goal from N2 and N3. Whichever point is closer to the goal will be selected as a waypoint.

Step 6:

 The distance to the goal from N3 is a little shorter, so a waypoint is established at N3. We will label this point W1 for waypoint #1.

Step 7:

At this point, we’ve done a bit of processing. If six other AI players are also plotting local paths, that’s a lot of processing! So, to be application friendly, the AI player will remember that it is still plotting waypoints and that it just placed W1. At this point, the path plotting function in the AI should return control to the main program. So for this frame, the AI player will supply no input for its character, which means that in-game, it will appear that the AI player has stopped to think. Which is fine. On the next game frame, the AI player will pick up where it left off.

Step 8:

The next game frame, when the AI player is given more time to process its route, it knows that it must begin the process at W1. The process which started on Step 1 is repeated again now from the new waypoint. A direct line is drawn to the goal again.

Step 9:

The next waypoint would wind up being W2 since the other possible waypoint would have been right on W1. Any new point that is calculated to land on an existing waypoint is ignored. Again, the AI player saves its progress in memory that it is now at the second waypoint, and it returns no input for this game loop iteration.

Step 10:

The next game cycle, these two potential waypoints are evaluated.

Step 11:

The next waypoint in the series becomes W3 because the distance between it and the goal is a little shorter. The AI player stores this waypoint and gives up another game loop iteration with no input.

Step 12:

Now, on the next iteration, when the two possible waypoints around an object are calculated, a problem arises. The closest point would be the one on the left, but the line to the point intersects the bounding box of a solid object. The spot on the right, however, is the same spot as the third waypoint, so it is immediately removed from consideration. This leaves the point that passes behind a wall, and an interesting problem.

Step 13:

Since the potential waypoint intersects a wall, it cannot be used directly. Instead, the point is pulled back towards along the line until it is a distance of ‘r’ past the first edge intersected. The new white dot represents a valid waypoint that is placed before the wall. However, since this has happened, wall tracing must be performed to be sure that the obstructing object is navigated around successfully. So now the edge of this bounding box is followed, and the edge of the bounding box that was hit is labeled as edge #1. The edge is also now marked in red for illustration convenience.

Step 14:

The bounding box edge of the blocking object is now followed. Two more points are generated. The closest one to the goal is in a wall. When it is pulled back, the point is the same as the starting point on the new line, so it is immediately removed from consideration. The farther point is unobstructed, so a test is made by drawing a line to the goal again. If the line passes through any previously labeled edges (like edge #1), then the AI would continue following the bounding box clockwise until a line could be drawn to the goal without passing through any marked edges. In this case, the line from the point to the goal does not hit edge #1, so this point becomes the next waypoint.

Step 15:

After giving up another game cycle with no action, the AI player will next draw another line to the goal again from W6 this time. Again, a bounding box is hit, so the usual calculations are made.

Step 16:
The closer of the two points to the goal is open and a path to it is unobstructed, so it is automatically selected as the next waypoint.

Step 17:

After another game cycle is given up, the AI player now draws yet another line to the goal from waypoint #7. The path to the goal is unobstructed, so the position of the goal becomes waypoint #8.

Step 18:

Before this route can be finalized, it must be optimized. Quickly, the AI player runs through the connections between Wn to Wn+1 where n = [1, number of way-points - 2]. For each pair, it checks to see if a direct path can be made without intersecting any objects between point Wn and Wn+2. If this can be done, it is assumed that Wn+1 is not needed and can be removed.

Step 19:

A path from waypoint #1 to waypoint #3 is checked, and waypoint #2 is removed because it isn’t necessary. A path from waypoint #1 to waypoint #4 is checked, and waypoint #3 is removed. A path from waypoint #1 to waypoint #5 is checked, however, the tool shed is in the way, so waypoint #4 has to stay. A path from waypoint #4 to waypoint #6 is checked, and waypoint #5 is removed since it’s not necessary. A path from waypoint #4 to waypoint #7 is checked, but a bush is hit, so waypoint #6 has to stay. A path from waypoint #6 to waypoint #8 is checked, but a bush is hit, so waypoint #7 has to stay. Now, the remaining waypoints are called the official route, and the AI player can move on to the next step in the Plan to follow the Local route.

Searching

When an AI player wants to get somewhere, it can plot a path there assuming it knows the location it is trying to get to. However, if the Plan is to get a red item, but the location of a red hot spot is not known, the AI player must search around until one is found. Bare in mind, of course, the discovery of another item of interest could result in the plan being altered. If the AI player also needs an orange item and an orange hot spot is located first, the current Plan will probably be altered to go after that item since its location is known.

The process for searching around for an AI player isn’t a complicated one. The AI players’ Knowledge Base has a reference to the level data, and the level will be subdivided into a bunch of much smaller sections. These small sections are represented in the AI player’s memory, so that when searching is necessary, an AI player can keep track of where it has searched already. Assume the grid below is a two-dimension subdivided representation of the level:

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	 .
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

AI player position

Assume also that the short black arrow represents the direction in which the AI player is currently walking.

When an AI player switches into “search” mode, it starts to mark off each subdivided section it has walked through already (indicated above with the boxes colored red.) When an AI player enters a new subsection, it marks it off and then finds an unobstructed area in a nearby subsection. A path is plotted to this unobstructed area, and the AI player repeats this process as necessary. Of course, as the AI player walks from subsection to subsection, stimuli is coming from the AI player’s Sensory area on each game loop iteration. As items are noticed, the AI player’s knowledge of this is updated, and the AI player does not leave search mode until either the object it is looking for is found or its Desire for another task takes precedence.

Also, because new hot spots are spawned randomly around the level as players claim items, it is possible that an area already searched may later contain an object that the AI player is looking for. So, to make sure the AI players check back at places searched previously, after ¾ of the subsections in a level have been checked off, and if still nothing has been found, the oldest checked subsections will be un-checked and thus set to be searched again.

Using Gags On Other Players

Whenever an AI player is running about a level and happens upon a hot spot that contains a gag, chances are generally good (but, of course, depends on the AI player’s Personality) that it will stop to pick the gag up. Once an AI player has a gag, it will be more inclined to use it on another player, particularly if they get too close.

In Scavenger Hunt, there are two types of gags: active and passive. An active gag is one of the gags that you need to be close to someone else to use. These are the Snake Can, Cream Pie, Whippersnapper, and Bag O’ Coal. The one gag that isn’t an active gag in the game is the Whoopee Cushion. This gag is a passive gag in that it can be planted at any time and is accidentally activated by other players.

The AI players handle these two distinct situations differently.

Active Gags

When the Desire to use a gag on another player takes highest priority for an AI player, the AI player will begin trying to chase that player until the AI player is within the melee range of the gag, or until a certain amount of time has expired, after which, the AI player will decide that the it cannot catch the player and decide to do something else.

To stop chasing a player, the Desire for chasing that player will simply have the extra constant “µ” set with a temporary negative value to prevent that Desire from being dominant for a while.

To chase a player, however, the AI player will use the same path finding that it uses to get to stationary objects. This may not seem effective, but bare two things in mind: One, the Desire to chase a player is likely only to happen when that player is relatively close, and two, the AI player only needs to get within the range necessary to use the gag of the player it’s chasing.

Passive Gag

As stated earlier, the one gag in the game, which cannot be used directly against another player, is the Whoopee Cushion. For this gag to work, a player needs to plant it somewhere so that another unsuspecting player can accidentally trigger it. When an AI player is carrying a Whoopee Cushion, an evaluation will take place the next time the AI player retrieves an item from a hot spot.

Once the hot spot has been cleared, there is a high probability chance that an AI player will choose to use the Whoopee Cushion if it is carrying it. To prevent multiple AI characters from dumping Whoopee Cushions in the same spot, another evaluation will also take place afterwards if the player decides it wants to use the Whoopee Cushion. Before it can set the gag, a check is made to see if another hot spot would intersect the one that would be made by the Whoopee Cushion gag. If another hot spot is too close by, the AI player will simply wait until it retrieves the next item before deciding again whether it wants to use it or not.

The added result of enforcing these as being the only times an AI player may place a Whoopee Cushion is that it’ll ensure that the AI player’s placement of the Whoopee Cushions will be positioned in places the same way normal hot spots look when they spawn. This will make it quite possible that even experienced players will still occasionally fall for the gag, thus giving the AI players that extra added illusion of intelligent behavior.

Interfacing With Hot Spots

Since the AI players will be set up to play the game in a way similar to how a human player would, it is also important to make the distinction about how the AI players will perform some of the slightly more complicated actions in the game such as retrieving items from hot spots.

Taking Items From Hot Spots

When a human player stands in a hot spot for an item and decides to try to find it there, the game issues out a series of buttons that must be pressed in the specified order exactly and as quickly as possible. Failure results in the item not being found and the player may make another attempt to get it. However, each attempt costs time.

AI players can make mistakes just like human players can. When an AI player wants a red item, for example, and reaches a red hot spot, the AI player will have to enter the button sequence the same way human players do. The speed at which an AI player can enter the sequence is determined by the AI player’s Aggression rating in their Personality data. The frequency at which AI players make mistakes entering the sequence is determined by their Anxiety level in their Personality data.

To enter a sequence, the game needs to send a message to the AI player indicating what the next button in the sequence should be. The AI player then incorporates the following delay based upon their Aggression level (unless, of course, the AI player is enjoying the effects of the Peppermint treats):

	Aggression Rating
	Time Delay For Input

	VERY_LOW
	.8 seconds

	LOW
	.6 seconds

	AVERAGE
	.5 seconds

	HIGH
	.4 seconds

	VERY_HIGH
	.3 seconds

For each button in the sequence that must be entered, there is a chance that the AI player will make a mistake entering it. After the above-mentioned delay in the input, when the AI player finally supplies an input command, there is a small chance that a mistake could have been made. Whether or not the AI player made a mistake on pressing the required button in the sequence is based upon their Anxiety level:

	Anxiety Rating
	Chance of mistake

	VERY_LOW
	1 in 100

	LOW
	1 in 80

	AVERAGE
	1 in 60

	HIGH
	1 in 40

	VERY_HIGH
	1 in 20

These odds, even when Anxiety is at its highest, may seem pretty low and unlikely to be noticeable. Bear in mind, however, that these odds are calculated for every button to be pressed in the button sequence, and there could be quite a few! Also, when a mistake is made, the game will send a message indicating to the AI player that they failed to input the sequence correctly, and the AI player must start all over again. When the AI player’s Logic processes that message, it will know to go back to pressing the “Search” button to take another shot at entering the button sequence for the hot spot again as long as the hot spot is still there and another player has taken it already.

Knocking On Doors For Trick-or-Treats

When an AI player decides to knock on a door for a Trick-or-Treat, the process is very similar to the one described in the section above. The difference is now they are waiting for a “treat awarded” or “trick activated” message after successfully entering the button sequence. Until this message is sent out by the game, the AI player will wait in place.

Using the Drop Box

AI players will use the drop box the same way a player does. The AI player will navigate to the interaction point indicated by a hot spot and stand on it. Then Logic will tell Reflex to send the game the input message to press the “search” button to begin the process of dumping its collected items into the Drop Box.

When the AI player receives a message from the game indicating that the items have been checked off its list, the AI player must go back into the memorization process it goes through at the start of the game where it can look at its scavenger list and memorize as many items as it is allowed to do at once. Like a human player, AI players also must return to the Drop Box before they can have another look at their scavenger list.

Special Effects

Throughout the game, between the gags, tricks, and treats, several different types of effects can be caused on other players. AI players are not immune to the effects of any of the gags, tricks, or treats in the game. They are handled specially by each AI player whenever a gag, trick, or treat has been used or activated. Each AI player checks to see if they are affected. If they are, a flag is thrown in their Logic so that the appropriate effect can be simulated.

The effects listed here are in addition to the Personality adjustments described earlier.

From Gags

There are five types of gags, each one causing a specific effect on a human player. Since AI players can be penalized exactly the same as the human players, an effort can still be made to be sure that each gag, when used on an AI player, does cause it some disruption. Gags last a specified duration of time, so when the game sends a message to the AI player that the gag has worn off, the AI player’s Logic will make the necessary adjustments so as not to simulate the negative effect of the gag anymore.

Each gag will “stunt” the AI player in the following fashion:

	Gag Type
	Effect on AI player

	Whippersnapper
	The AI player will navigate back and forth along the line it is traveling in whenever it is following a path. It will be unlikely that the AI player will reach its next waypoint until the effects wear off.

	Cream Pie
	AI players will not be able to chase players or interact with any hot spots until the effects of this gag wear off. They may still navigate.

	Whoopee Cushion
	Aside from the Personality adjustments and the wasted time, no additional penalty will be applied to the AI player for this gag.

	Bag O’ Coal
	Again, the penalty of this gag is severe enough that an AI player need not do anything additional to burden itself. It may, however, decide immediately to head for the Drop Box.

	Snake Can
	Once again, the penalty of this gag is severe enough that an AI player need not do anything to itself to penalize itself more. Personality adjustments will be made, and, of course, like a human player, the AI player will lose its inventory.

From Treats

Whenever an AI player receives a treat from a Trick-or-Treat, it will take note of how it has affected its character and play accordingly. Like gags, there are five kinds of treats. Each treat eventually wears off after a certain duration of time. When this time expires, the game sends a message indicating that the effects of the treat have worn off, and the AI player’s Logic will take note of that and adjust its play again.

Each treat will temporarily affect the AI player’s behavior in the following fashion:

	Treat Type
	Effect on AI player

	Cookies
	The AI player’s Logic will ignore checks to Aggression for the duration of this treat’s effects, and use the character’s boost constantly when running around.

	Lemon Drop
	The AI player’s Logic will ignore the Fear Of Others value when considering whether or not to use a gag on a player for the duration of this treat’s effects.

	S’mores
	The AI player has its Memory of hot spots for each color filled in if empty. Incorrect locations are overwritten. Existing locations have their decay value altered so that the timer is reset on how long an AI player has before that location is “forgotten” and removed from memory.

	Peppermints
	AI players do not need to worry about delays or entering input sequences for hot spots. Just like for human players, the AI player will get the item automatically.

	Jelly Beans
	This treat affects the AI player’s character stats for the remainder of play. Since this is powerful enough, no additional action is taken on the part of the AI player.

From Tricks

Whenever a trick is pulled, each AI player is affected, though perhaps slightly differently than a human player would be affected. Since AI players are bound to differ in several obvious ways from human players, each AI player makes an attempt to disrupt itself in an equivalently inconvenient way as a human player might be affected.

Each “trick” will affect the AI players in the following way:

	Gag Type
	Effect on AI player

	Shuffle The Deck
	The AI players all have their Memory of hot spot locations erased.

	Change Places!
	After being switched around, AI players must stop any current Plan, recalculate their Desires, and decide on a new Plan.

	Total Eclipse
	AI players will assume any hot spot in memory is valid for whichever item they need. They will not be able to check the color to make sure that it’s the correct one.

	The Ol’ Switcheroo
	AI players must reevaluate whether the items in their inventory still satisfy any of the ones they “think” they’ve collected for their scavenger list.

	Take Out The Trash
	All AI players will immediately want to head back to the Drop Box.

Collision Detection

Overview

To keep collision simple and fast, all collisions will be performed on a 2D plane. Essentially, all the 3D objects will be projected onto this 2D plane for collision simplification.

A basic component of collision is a ray. The ray class is outlined below:

	Ray

	Functions

	Name
	Input
	Description

	Access Functions
	N/A
	Functions to access the private variables.

	Variables

	Name
	Description

	start
	This is the ray’s starting point.

	dir
	This is the ray’s traveling direction

All collision areas will be derived from the collision area abstract base class. This class is outlined below:

	Collision Area

	Functions

	Name
	Input
	Description

	Access Functions
	N/A
	Functions to access the private variables.

	Variables

	Name
	Description

	center
	This is the center point of the collision area.

Oriented Boxes

All static objects placed onto the map for Scavenger Hunt will have a box used for collision. Note that the boxes need not be axis-aligned or rectangles; they can be parallelograms. The objects with oriented boxes are as listed:

· Buildings

· Fences and obstructions

· The drop box rug

The oriented box class is outlined below:

	Oriented Box Collision Area

	Functions

	Name
	Input
	Description

	Access Functions
	N/A
	Functions to access the private variables.

	Variables

	Name
	Description

	u
	This is the right directional vector of the box. Its length determines the boxes size, so this vector will not be normalized.

	v
	This is the front directional vector of the box. Its length also determines the boxes size, so this vector will not be normalized.

Circles

Circle collision areas will simply store the center of the circle and a radius. Objects that will have circles used for collision will be:

· All Player character models

· Stations

· Hot spots

· Gag tossing

· Oriented Box optimizations

The circle class is outlined below:

	Circle Collision Area

	Functions

	Name
	Input
	Description

	Access Functions
	N/A
	Functions to access the private variables.

	Variables

	Name
	Description

	radius
	This value is the length of the circle radius.

Bounding Area Collision

Collision between bounding areas will only be circle-to-box or circle-to-circle. Because boxes will not be moving, they can be considered static for all collisions. Also, there will be no dynamic-to-dynamic collisions. All collisions will occur with static objects and will reduce collision time dramatically.

To speed up collisions even more, each oriented bounding box can be changed into a circle area for an initial collision check. In this manner, bounding areas can be dismissed as quickly as other circles with far less computations. The procedure for this method is outlined below:

Step 1) Take the u and v vectors, and add them together to get u + v.

Step 2) Take the u + v vector, and make the length of that vector be the radius of the circle.

Calculating the radius of this new bounding circle will take a square root computation; however, this only needs to be done once at the beginning of the level.

Circle to Circle

For collision with circles, a vector will be created from one center of a circle to the other. The length of this vector squared (the dot product with itself) can be compared to the sum of the two radii of the collision circles.

Dynamic Circle to Circle

If the first circle is given a velocity, then a nifty little trick can be performed. If we add the radius of the moving circle to the radius of the static circle, then we can do a simple ray to circle collision test.

[image: image3.png]
Circle to Box

For collision with boxes, each edge will be converted into a ray and checked against the circle to see if it collides.

A cross product and the box edges with the circle center can tell if the circle is contained entirely within the box.

Dynamic Circle to Box

This problem can be broken down into treating each box edge as a plane. Take the cross products of the wall with the current circle center and the future circle center. If the signs do not differ, then there was no collision with this edge. If the signs are different, then a collision occurred. The point of collision can be found by normalizing the wall normal and scaling it to the length of the circle radius. Take the circle center point minus this vector to get the point on the circle where the collision occurred.

Now, we can send a ray from this point on the circle in the same direction as the velocity. Find the intersection time from ray to box collision and move the circle to this point. We can now take the remainder of the velocity not traveled and project it onto the plane. Now we can attempt to move the circle along this vector by repeating the process again in this new direction.

[image: image4.png]
Scripting

Overview

A lesson that we have learned from the past is that the productivity of a team member or entire team can be severly hindered by the necessity to recompile C or C++ code for even trivial, small changes. Examples of these trivial changes include fixing a typo in a string or changing a constant number. Such a change can result in a recompilation of not just the affected file but others that depend on it and can take anywhere from a couple of seconds to several minutes of wasted time.

To alleviate this situation, Scavenger Hunt will make use of a scripting system. A scripting language is a programming language like any other, with the exception that it does not need to be compiled or recompiled in order to be used. Additionally, the game can make use of newly written scripts without even restarting the game. Hopefully all of this will result in greater productivity, less tediousness, and ultimately, greater quality.

Tasks

Executing a Script File

The first task in creating a scripting system is to be able to execute a script file. A script file contains the script code such as functions, commands, and data variables. The game must be able to open this file, interpret its contents, and execute them in a meaningful manner.

This task is largely taken care of for us by the Lua library. The Lua library is capable of performing this task automatically with just one line of code.

Exposing C++ Functions and Methods to Lua

While it is nice to be able to execute script files, it is meaningless unless the scripts can actually have an effect on the game. To have an effect on the game, the scripts must be able to call functions and class methods defined in our C++ code. While the Lua library provides the functionality to expose a C function to Lua so that it can be called by Lua, our game is written in C++ and therefore we will have hardly any pure C functions for Lua to call as they will mostly be methods of classes that we write. Lua does not provide the functionality to call a C++ class method, so this must be written.

To allow for Lua to call the methods of a C++ class, the C++ class that provides an interface to Lua will do quite a few tricks to fool Lua into thinking that the C++ method being exposed to it is a plain C function. It will also provide an interface that is clean enough to abstract all of Lua from the class' users. Lastly, it will provide the functionality to pass data to and from Lua, including exotic types such as C++ classes and structures.

Exposing Lua functions to C++

We must also be able to call functions defined in the script file so that the script can perform modularized tasks like "do AI" or "act on this mouse click." This functionality is provided to us already by the Lua library so no work is needed here.

Exposing C++ Classes to Lua

Lastly, we must be able to make Lua code aware of our C++ classes so that it can use them in the familiar manner that C++ would use. The Lua interface must also be able to expose classes which are abstract, meaning they cannot be constructed, and classes that are templatized, meaning they are created based on a type, such as a list of integers or a list of strings. The Lua library provides no functionality in this area, so it must be written from scratch, which is a major task.

To do so, we will again fool Lua into thinking that our C++ classes are nothing more than a logical collection of functions. This will be done by exploiting the metatable feature of Lua to form a logical class, where Lua has no concept of a class.

Dynamic Lua Code Execution

As is found in many first-person shooter games' "consoles," Scavenger Hunt will also have the capability to execute Lua commands typed into such GUI interfaces such as line edits. This is actually surprisingly easy as Lua provides the functionality in a simliar manner to the execution of a script file. We must simply provide a Lua command to the Lua library and it will be executed for us as if it were executed from a script file. This will greatly enhance our ability to make changes "on the fly" without having to restart the game.

Memory Management

The Lua language allows for data variables to be created, even exotic ones such as classes and structures. These classes or structures will be actual C++ classes, allocated dynamically by C++, and therefore the issue of freeing the allocated memory must be addressed. Also, Lua provides the functionality of "garbage collection" to automatically free any memory no longer being used. However, this garbage collection must work seemlessly with the C++ code so as to not slow down the game, properly allow for C++ to perform shutdown routines, and completely free all memory used.

This task is integrated with the task of exposing C++ classes to Lua in that the class' destructor, the function that is called to destroy and free the class' memory, is exposed to Lua as the function to call when Lua collects the class as garbage. This makes sure that Lua will call the class' destructor at the time that it is to be deleted, but the issue of actually having that deletion time must still be dealt with. Luckily, Lua provides the C++ programmer the ability to delay garbage collection until it is an appropriate time to collect it. This allows us to use free time at the start or end of a frame to collect Lua's garbage though a convenient library function call.

Requirements

The C++ interface to Lua requires very little memory to do its job as it mainly acts as an interface for the C++ code to work with Lua and the Lua code to work with C++. It need only contain a pointer to the Lua state to interact with the Lua library. The Lua library, however, doubtlessly contains quite a few data variables as it needs to store them for the Lua script files as data variables are created. However, these variables are small, simple ones such as numbers and strings, and will not have an overall impact on the memory usage of the game.

Lua script files are plain text files and therefore very small when stored on a disk. They can also be compiled to bytecode, although it increases the size of the script file significantly. As an overall percentage of the game's on-disk size, the Lua script files should be a negligable, tiny fraction.

cLua

	Data Variable Members

	Variable Type
	Variable Names
	Description
	Supported Values

	lua_State*
	mLuaState
	A pointer to the state of the Lua scripting. This is the interface to the Lua library.
	NULL = No Lua State

Other = The address of the Lua state

	MasterRegister

	Return Value
	Description
	Argument List

	void
	The master register for all C++ functions and classes exposed to Lua.
	void

	registerFunction

	Return Value
	Description
	

Argument List

	void
	Register a C function with Lua so it can be called from Lua.
	const char* name = Name to give to the function exposed to Lua.

LUA_FUNCTION func = Pointer to the function to register.

	cLua::doFile

	Return Value
	Description
	Argument List

	void
	Tells the Lua library to execute a given file. All functions contained therewithin will be known to C++ from then on.
	const char* filename = The script file to execute.

	getGlobal

	Return Value
	Description
	Argument List

	void
	Gets an identifier global to Lua's scope, presumably a function so it can be called.
	const char* global = The global identifier.

	call

	Return Value
	Description
	Argument List

	void
	Calls a Lua function. Any arguments to the function should have been pushed already.
	int numarguments = The number of arguments the function takes.

int numreturns = The number of returns the function returns.

	pushBoolean

	Return Value
	Description
	Argument List

	void
	Pushes a boolean value to Lua's stack.
	int boolean = A boolean value to push to Lua.

	pushString

	Return Value
	Description
	Argument List

	void
	Push a string to Lua's stack.
	const char* str =The string to push to Lua.

	pushNumber

	Return Value
	Description
	Argument List

	void
	Push a number to Lua's stack.
	double number = The number to push to Lua.

	isString

	Return Value
	Description
	Argument List

	bool
	See if a value in Lua's stack is a string.
	int index = The index of Lua's stack to check.

	isNumber

	Return Value
	Description
	Argument List

	bool
	See if a value in Lua's stack is a number.
	int index = The index of Lua's stack to check.

	isBoolean

	Return Value
	Description
	Argument List

	bool
	See if a value in Lua's stack is a boolean.
	int index = The index of Lua's stack to check.

	toString

	Return Value
	Description
	Argument List

	const char*
	Returns a string from a Lua's stack.
	int index = The index of Lua's stack to return from.

	toNumber

	Return Value
	Description
	Argument List

	double
	Returns a number from a Lua's stack.
	int index = The index of Lua's stack to return from.

	toBoolean

	Return Value
	Description
	Argument List

	bool
	Returns a boolean from a Lua's stack.
	int index = The index of Lua's stack to return from.

	stackSize

	Return Value
	Description
	Argument List

	int
	Returns the size of Lua's stack.
	void

	error

	Return Value
	Description
	Argument List

	void
	Errors the Lua state with a message.
	const char* errString = The error message to send to the Lua state.

	CollectGarbage

	Return Value
	Description
	Argument List

	void
	Explicitly collects the garbage of the Lua state.
	void

	registerClass

	Return Value
	Description
	Argument List

	void
	Registers a class with Lua.
	void

	registerAbstractClass

	Return Value
	Description
	Argument List

	void
	Registers an abstract class with Lua.
	void

	pushObject

	Return Value
	Description
	Argument List

	void
	Pushes an object, such as a class or structure, to Lua.
	T* obj = The object to push to Lua.

bool gc = Whether or not to turn on garbage collection of the object.

	toObject

	Return Value
	Description
	Argument List

	T*
	Gets an object from Lua's stack.
	int narg = The index to Lua's stack to get the object from.

File Formats

Overview

Scavenger Hunt will not need many specially designed file formats. Only two types are files will be need to be generated exclusively for the game. One is for the representation of the level data, and the other is for player data.

Player Data File

Each player profile for the game will be stored in a “profiles” folder with a “.pro” extension. The file will keep track of the following statistics:

· Player Name

· Player ID

· Total Games Played

· Total Games Won (also displayed percentage won)

· Total Games Lost (also displayed percentage lost)

· Games won / lost on a per level basis

· Games won / lost on a per character basis

· Total Items Collected

· Total Items Deposited

· Total Gags used

· Total Successful gags

· Total times gagged

· Total Play Time

· Play Time on a per character basis

· Play Time on a per level basis (if more levels are added.)

· Total Gold Items Collected
These profiles should be loaded when the player profile selection menu is loaded. They should be attached to the current player struct so they can be easily updated and resaved. Note that AI players should not have a profile.

Scene File

The scene file will contain all relevant information for the level that will be displayed. The game will handle the calls of loading graphic files and storing hotspots and AI waypoint nodes. The scene file format is broken down as follows:

· Ground Resources – This portion will contain the level ground mesh, texture, and anything else that is special or specific to the level floor.

· Resource List – This is a list of mesh files organized by number so that objects listed can reference this number.

· Object Texture List – This is the list of actual objects in the level. Each object will list its associated texture.

· Object Positions – In the same order as the previous list of objects, this will list the positions of the objects in the level.

· Object Orientations - In the same order as the previous list of objects, this will list the orientations of the objects in the level.

External Resources

Overview

To give Scavenger Hunt a polished appearance, art and music resources will be utilized from talents outside of the programming team. All of the artistic resources planned have met Digipen’s guidelines and has Digipen’s approval.

Art and Video

Scavenger Hunt will have a distinct look to it due to the nature of the game’s 1950s theme. To help create the aesthetic of a specific time period, research has gone into what types of objects should appear in the game, what the houses should look like, what types of clothes the children should wear, etc.

There are no movies or CG sequences anywhere in Scavenger Hunt, so the artwork for the game will consist of 3D models for the characters and objects used to build the levels. Also, 2D art will be needed for the menus, backgrounds, icons, and the HUD display when in the game. The 2D art will be created mostly by the programming team since the art team will need all of the time that they have to complete the 3D models needed for the game.

[image: image5.jpg]
Sample of un-texture mapped 3D model

All of the 3D models and objects will be created in 3D Studio Max 5.1 using Character Studio 4.0. The character models will be bipeds with a bone system used to describe the animation. This will help keep the file size for the model data used for the game relatively small.

Four to eight characters will be featured in the game depending on scheduling and time constraints. For each of these eight characters, a series of animations will be produced. Each animation is listed below by name, time duration for the animation, an indication as to whether or not it is a looping animation, and a description of what type of animation is expected. Also, since the time frame for producing this artwork is very limited and not all of the characters or all of the animations desired are expected, the animations below are separated into three priority categories.

	High Priority

Fidgeting: (2 Seconds, looping) Used when the player stops moving.

Running: (1 Cycle, looping) Used whenever the player is holding down a running direction.
Generic Searching: (3 to 5 seconds, looping) Used when a player is interacting with a hot spot. Take note that this could potentially be any in-game object, so this animation needs to be very general and multi-purpose.
Finding/Discovery: (1 to 2 seconds) Used when a player finds a scavenger item, and also as their victory animation if they win the round.
Knock-back: (0.5 seconds) Used when a player is hit with one of the following gags: pie, whippersnapper, bag o’ coal, or snake can.

	Medium Priority

Character Idle: (5 to 10 seconds) Used when a player has not given the character an action for a certain duration of time.
Weighted Running: (1 Cycle, looping) A slower run used when a player is running with several items in his/her inventory.
Heavily Weighted Running: (1 Cycle, looping) A very slow run used when a player’s inventory is full or nearly full.
Gag throwing: (0.5 seconds) Used as a GENERIC RIGHT-ARM OVERHAND throw. This is so, later, a model of the “thrown” object may be inserted. To do this, the motions must be fairly identical from character to character.

	Low Priority

Bored: (2 seconds) Used after a long enough duration has passed while a character is in “Character Idle” animation and an action has still not been given.
Finding Gold Item: (2 seconds) Just a more boisterous version of the “Finding/Discovery” animation. It can stand apart from the normal victory dance, so to speak.
Winded Standing: (2 seconds, looping) To be used if a player runs too long with his/her speed boost held down. The player will be frozen for a couple of seconds while the character “gets his/her wind back.”
Knocking On Door: (1 to 2 seconds) An action meant to dress up the occasion when a player takes a chance on a trick-or-treat.

For the character models, a frame rate of 30fps was decided upon for the precision of the animation, and rates of speed for running were also established, along with the distance covered with each character’s step:

Running speeds (uniform for every character):

Full unburdened run :

Speed - 3 meters/sec

Stride – 1 meters

Slightly burdened run :

Speed – 2.4 meters/sec

Stride – .8 meters

Heavily burdened run :

Speed – 1.8 meters/sec

Stride - .6 meters

Scavenger Hunt will also need an assortment of objects to be placed around the level. Each object will also be rendered in 3D Studio Max but will not need any animation.

A list of needed objects is listed below by name, and the object’s dimensions:

	Object Name
	Height
	Width
	Depth

	Stone Wall
	.7m
	1m
	.4m

	House(two-story family)
	8.5m
	14m
	8m

	Drive-In Big Screen
	12m
	18m
	1.5m

	Shrub (Bushy,untamed)
	2m
	1m
	1m

	Bush (trimmed)
	1m
	1m
	1m

	White-picket fence piece
	1.75m
	1m
	.1m

	Park Bench
	1m
	1.5m
	.5m

	Mailbox (for house)
	1.25m
	.25m
	.4m

	Fire Hydrant
	.6m
	.2m
	.2m

	Tree (bushy)
	8m
	.75m
	.75m

	Tree (bare)
	6.8m
	.6m
	.6m

	Street Sign
	2.5m
	.1m
	.1m

	Billboard
	6m
	7m
	.3m

	Dog House
	1m
	.8m
	1m

	Shed
	4m
	4.5m
	3.25m

	Pole for drive-in speaker
	1.3m
	.2m
	.2m

	Cemetery Stone
	1m
	.8m
	.5m

	High School building
	9.5m
	30m
	15m

	Football field uprights
	9m
	6.2m
	.2m

	Storm Cellar Doors
	.4m
	1.5m
	2.25m

	Rock Carving (statue)
	3m
	1m
	1m

	Old man’s mansion
	11m
	28m
	10m

	Light Post
	5m
	.2m
	.2m

	Mailbox (on street)
	1.3m
	.6m
	.4m

	Car #1
	1.3m
	1.5m
	3m

	Car #2
	1.3m
	1.5m
	3m

	Car #3
	1.3m
	1.5m
	3m

	Football bleachers
	4m
	6m
	4m

	Drop Box
	1m
	1.5m
	.75m

Sound and Music

Considering the time period and the game’s theme, a unique soundtrack will also be need. Initial concepts are for a musical style that could be a mixture of 1950’s rock-a-billy and doo-wop with contemporary musical styles, approaches, and mixing techniques. The goal is to make the music sound like it’s rooted in the 50’s to be appropriate, however, to incorporate contemporary dance music styles and tempo so young players who may not enjoy straight nostalgia might still enjoy it.

Scavenger Hunt will contain orchestrational songs without any lyrics supplied to the music. The music is meant to be atmospheric. Just a fun sounding collection of music playing in the background that helps dress the game and add that extra level of presentation that really gives a game a strong appeal.

Sound effects for Scavenger Hunt would consist of a varied collection of sounds ranging from atmospheric noises like chirping birds and snapping to splat noises for when a pie is thrown at someone to gentle jingles for when a player collects useful items to clicks and chimes for the opening menus.

For both sounds and music, sounds will be stored in .mp3 format and later converted to the Ogg Vorbis format. A few songs will be needed since playing a level with seven other people could result in rounds of play lasting up to fifteen minutes until a winner in determined. Thus, unless there are at least a couple of respectfully lengthy songs for in-level music, the music would get repetitive very quickly.

Below is a list of the estimated musical requirements:

· 2 Neighborhood music tracks.

· About 3-3 ½ mins. each

· Dancey, upbeat “Peppermint Twist” sounding ditties.

· 1 Celebratory jingle for when a player wins.

· About 10 seconds.

· Bubble gum pop rock sounding.

· 1 Slower, rock / blues style jingle for when player loses.

· About 10 seconds.

· Rock / blues lone guitar riff sounding.

· 1 Title Screen theme music track.

· About 30 – 45 seconds.

· Eclectic fun mixture of any of the previously mentioned forms.

· 1 Menu music track.

· About 1 – 1 ½ mins.

· Another fun eclectic mixture of previously mentioned styles.

· Credit screen music

· About 1 ½ to 2 mins.

· Yet another fun eclectic mixture of previously mentioned styles.

Editors

Overview

To improve productivity, some extra work will be done setting up exterior programs to create resources for the game. This includes a level editor with level file generator, and an AI testing module.

Level Editor

The level editor will essentially be a combination of two programs. The end result of the process is to create a scene file (.SCN) to use for loading into the game. The process of creating a scene file is outlined below:

Step 1) The level will be created in 3DS MAX. Objects will be set up in their respective positions and oriented accordingly. Additionally, dummy objects will be used to keep track of object orientations, player starting positions, hotspot locations, and AI node locations. The dummy objects will all follow a naming convention to be useable for the next step. The MAX scene will now be exported into ASCII (.ASE) format.

Step 2) Once an ASCII file has been created, the file may then be passed into another program (written by the team) to parse the file and produce the scene file (.SCN) for use with the game.

AI Testing Module

The exterior module for testing the AI system will be built and used to work out a lot of the potential problems in the AI system before it is incorporated into the game project. Since level representation and navigation is essentially a 2D problem in Scavenger Hunt, it makes it convenient to test in a simple Windows application. The testing module will allow for working out each feature as it is added to the AI system, without having to worry about working within the framework of a large project.

Module Features

The AI testing module will feature a simple grid level representation where each section can be filled in to create solid, impassible areas. These configurations can be saved so that scenarios can be quickly built and saved. Also, AI players can be created, configured, and placed in the grid anywhere at any time. Each AI player’s statistics will be displayed in side windows which indicate all of the values in its Memory, what action it is trying to carry out, and what messages it’s processing.

Also, a “user-playable” character can be created, placed in the grid, and controlled by the user working with the testing module. This will allow more flexibility in testing the chasing routines, gag usage, etc.

Module Display

A simple mock-up of the display.

The number of boxes inside the grid will be adjustable so maps of different sizes can be simulated. The solid color circle in the grid represents the AI player position. The other rings represent hot spots of the color of the ring. Solid red blocks represent non-passable areas.

The display will be used to set up to display as much data as possible on each AI player as they move about and perform actions. The windows around the display will be set up to display relevant information to the selected options.

Module Lifespan

The AI testing module will be used until the AI players are behaving in a desired fashion and utilizing most of the game features. Once this has been accomplished, the AI code will be transferred to the game project and the interface code will be modified to work with the game.

Installer

Overview

Video games for the personal computer almost always require the user to install them before playing. This is in contrast to the console gaming experience where the player simply inserts the game into the console and begins playing. Since Scavenger Hunt is an arcade-style game much similar in gameplay to a console game, we want to get the install process out of the way so as to extend the gamplay's feel to the install process and indeed the entire experience of playing Scavenger Hunt. To do this, we will create installers for Scavenger Hunt that are easy and fast to download, easy to use, and quick to install.

Tasks

Cross-Platform Installation

An installer program is an executable program like any other and therefore, based on our choices of platforms, no one installer will be able to install for all three platforms. While we are able to build the game on the three platforms based on the same source code, that process has certain requirements to it that are not suitable for the creation of an installer program. For instance, the game will rely on the presence of certain libraries in order to run. However, to make downloading the game from the internet easy, we need to have the installer be available in just one file. Therefore we would not be able to provide the libraries necessary to run a cross-platform installer. The second limitation is that we would have to expend a great deal of time to create an installer program and do the research that comes along with that. Because of the above reasons, we will be using installers specific to each platform that are provided by third-parties.

The NullSoft Install System (NSIS)

 The installer we will be using for the Windows platform will be the NullSoft Install System, or NSIS for short. NSIS allows for the creation of a customized installer based on a script. We will write that script to provide for customizations such as including our own icon, license file, installing all needed files, and providing install sections like “Core Files,” “Start Menu Shortcut,” and so forth. The NSIS installer we will create will have extremely minimal overhead, will automatically use powerful compression to compress our distributed files, and automatically verify the file's integrity after it has been transmitted over a network or install medium.

The Loki Installer

The installer we will be using for the Linux platform will be the Loki Installer. The Loki Installer is very similar to the NSIS installer, execept that we will write an XML file to specify our customizations to the installer instead of a proprietary script.

The MacOS Installer

Unlike the other two platforms, the installer for MacOS will not be an executable program. Instead, the game will be provide in a compressed archive that uses the same compression technology that the Windows and Linux installers do. The game will still be easily installed as the MacOS X file browser is able to decompress the library, which is enough to install it on the system.

Installer Feel

The "feel" of each installer program we use will have to be as described in the introduction- easy and quick. As we have used the NSIS and Loki installers in the past, we know that they can deliver this with minimal effort on our part. Firstly, the player must agree with the game's license or the installer program will terminate. Then they will be prompted to choose the sections they would like to install and where they would like to install them. Lastly, the chosen sections will be installed and they will be prompted with an option to immediatly begin playing the game. All options on all pages of the installer will default to reasonable values that are guaranteed not to get the player into any trouble, such as not including files that they will need later on. Therefore, once they have agreed to the license, the player can simply click the "next" button over and over without even reviewing the options on each page and the game will work as expected.

Requirements

The installer files will add only a minimal amount of overhead to the distributed files, but this will be more than offset as they will each compress our distributed files to lessen disk space usage, and by extension, transfer time.

The installer's compression and decompression technique, known as gzip, is extremely fast and will not require the player's processor to be taxed to the point that it is the bottleneck of the install. This is a good thing as the limitation for install time will be put on the player's data transfer speed, which is likely to be the speed at which they can copy from the install medium, like a CD-ROM or the Internet, to their hard drive.

Mockups

The following are screenshots from the Drop Drop installer programs, which will be very similar to the Scavenger Hunt installer programs.

NSIS

License Screen

Where to Install Screen

Sections Screen

File Copy Screen

Details/Completed Screen

Loki Installer

License Screen

Ready to Install Screen

File Copy Screen

Completed Screen

Glossary

Abstract Base – A C++ language concept of a class that declares an interface that must be defined by an inheriting class.

(API) Application-Programmer Interface – The typically low-level collection of functions and structures that define the operations of a library.

Biped – A bi-pedal (two-legged) 3D model.

Bytecode – Code written for a virtual environment that has been assembled to be processed and executed by that environment.
Class – A C++ collection of methods and data variables.

Doppler Effect – The phenomenon of sound changing pitch and volume as it moves closer to or further away from the listener.

Exotic Type – A complex variable such as a class or a structure.

Graphics Objects – The entities that define a scene that will be displayed by the graphics engine during a frame.

Graphics Resources – The data used to build graphics objects.

GUI – Acronym for Graphical User Interface.

HUD – Acronym for Heads Up Display. The in-game menus.

Immediate[-MODE] – A type of graphics API that must be told each frame what is to be displayed.

Joystick – Any console-style game controller for the personal computer. This includes but is not limited to actual joysticks, game pads, and steering wheels.

Joystick Ball/Trackball – A ball embedded into a joystick that can be freely spun as a method of input.

Joystick Hat – The eight-directional input device on a joystick, similar to a directional pad on a console game controller.

Lua – The scripting language used in Scavenger Hunt.

Method – A function of a C++ class.

Mouse Wheel – Typically positioned between the left and right buttons, the mouse wheel can be pressed as a button or rolled up or down as yet more buttons.

Ogg – The Ogg project aims to provide a complete multimedia framework without royalties and with open standards.

OpenAL – A sound library by industry leader Creative Labs that provides three-dimensional sound.

Packet – A short fixed-length section of data that is transmitted as a unit in an electronic communications network.

Persistent[-MODE] – A type of graphics API that retains information describing the scene from frame to frame.
Script/Script File – A file containing scripting language code.
Scripting Language – A programming language that does not need to be compiled to binary code in order to be executed.
SDL – The Simple Directmedia Layer, our chosen input library that also provides functionality to other areas of the game.
Singleton – A programming language concept of an object that has at most one instance in a program.
Signal – An event that can be hooked to slots.

Slot – An objectification of code that can be called, such as a C function, a C++ method, or a Lua function.
Sound Buffer – A chunk of memory that holds uncompressed audio data.

Sound Data – The abstraction of a sound buffer.

Sound Source – A point in three-dimensional space that emits sound.

Streaming – The technique of loading a small amount of audio data from a file into a sound buffer, as needed.

Structure – A C++ collection of data variables.

Texture Map – Typically a two-dimensional image that is applied to surfaces of a three-dimensional model. It’s like painting by numbers, except each piece of the image is filled with a design or picture instead of a solid color.

Three-dimensional sound – Audio that sounds like it is coming from a point in three-dimensional space, rather than flatly from the speakers.

Variable/Data Variable – A symbol representing a dynamic value such as an integer, a string, or an exotic type.

Vorbis – The Ogg project's audio standard that provides for low file size, high fidelity sound.

Widget – An element of the GUI such as a button, a label, or a check box.
XML – eXtensible Markup Language, a generalized hierarchical layout in plain text that is easy for humans and applications to read, write, and validate.
Team Signature Sheet

	Art Director

	Jemal Armstrong

	

	Producer

	Jonathan Bryant

	

	Technical Director

	Douglas DaSilva

	

	Lead Programmer

	Jackson Dunstan

	

	Designer

	Kevin Neece

	

	Product Manager

	Eric Smith

	

/**

* Function Name : <Name of function>

**

 * Purpose : (Description of what the function is supposed to do.)

 * Arguments : <Argument 1 type> <Argument 1 name> <Description>

 * <Argument 2 type> ……….. etc.

 * Return Value : <type> (Description of what it is, range in values, etc.)

 * Author : <Name of author> (Helps when you have a question.)

 * Revision List : <date of revision> <author of revision> <reason>

***/

THIS IS A HOUSE!

THIS IS A HOUSE!

THIS IS ANOTHER HOUSE

 1	2					3

				 4

 5			6	7					 8

Waypoint[4].location.x = xxxx.x

Waypoint[4].location.y = xxxx.x

Waypoint[4].NumberOfConnections = 2 // Number of points that point 5 can

				 // connect to.

Waypoint[4].connection[0].index = 0 // Index into waypoint list.

Waypoint[4].connection[0].distance = 15 // Length from point 5 to point 1.

Waypoint[4].connection[1].index = 5 // Index into waypoint list.

Waypoint[4].connection[1].distance = 3 // Length from point 5 to point 6.

Waypoint[4].OptimumPath[0].NumOfPoints = 1 // Number of points passed to

				 // get to point number 1.

Waypoint[4].OptimumPath[0].PointIndexList[0] = 0 // Point to go to first.

Waypoint[4].OptimumPath[1].NumOfPoints = 2

Waypoint[4].OptimumPath[1].PointIndexList[0] = 0

Waypoint[4].OptimumPath[1].PointIndexList[1] = 1

Waypoint[4].OptimumPath[2].NumOfPoints = 3

Waypoint[4].OptimumPath[2].PointIndexList[0] = 0

Waypoint[4].OptimumPath[2].PointIndexList[1] = 1

Waypoint[4].OptimumPath[2].PointIndexList[2] = 2

Waypoint[4].OptimumPath[3].NumOfPoints = 3

Waypoint[4].OptimumPath[3].PointIndexList[0] = 5

Waypoint[4].OptimumPath[3].PointIndexList[1] = 6

Waypoint[4].OptimumPath[3].PointIndexList[2] = 3

Waypoint[5].OptimumPath[4].NumOfPoints = 0 // A zero indicates that

						 // this is the same point

						 // as the starting point.

Etc….

TOOL

SHED

 X

 X

TOOL

SHED

 				N1

“

“

“

“

				N2

				N3

“

“

“

				

		 W1

 X

								

								 W1

TOOL

SHED

 X

						W2		 W1

TOOL

SHED

 X

						W2		 W1

TOOL

SHED

 X

				 W3	W2		 W1

TOOL

SHED

 X

				 W3	W2		 W1

TOOL

SHED

“

“

“

 X

				 W3	W2		 W1

TOOL

SHED

“

“

 X

		 1		 W3	 W2		 W1

TOOL

SHED

“

“

“

“

 X

		 1 W5 W4 W3	 W2		 W1

		 W6

TOOL

SHED

 X

		 W5 W4 W3	 W2		 W1

		 W6

TOOL

SHED

“

“

“

 X

	 	 W5 W4 W3	 W2		 W1

 W7	 W6

TOOL

SHED

 X

W8

 W5 W4 W3	 W2		 W1

 W7	 W6

TOOL

SHED

 X

W8

 W4	 	 		 W1

 W7	 W6

TOOL

SHED

Active AI Player

Ralph

Goal

Ralph’s Personality

Difficulty: Easy

Memorize: clr group

Gags: Ignore

Turbo: Occasionally

Gag use: On contact

TrickoTreat: Occas.

Memory Size: Small

Door

Ralph’s Personality

Temper:

Aggression:

AI #1

Ralph’s List

A red item.

A purple item.

A blue item.

A blue item.

A red item.

Ralph’s Memory

Red circle at <x,y>

Current Action

Plotting New Path

Step #1

Iteration #1

Ralph’s Inventory

Green Item

Copyright © 2004, Digipen

- 53 -

